Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Langmuir ; 40(40): 21052-21066, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39222152

ABSTRACT

Nanobioengineered interfaces have gained attention owing to their small size and high surface area-to-volume ratio for utilization as a platform for highly selective and sensitive biosensing applications owing to the integration of biological molecules with engineered nanomaterials/nanocomposites. In this work, a novel Ag-complex, [(PPh3)2Ag(SCOf)]-based quaternary Ag-S-Zn-O nanocomposites (NCs), was synthesized through an environmentally-friendly process. The results revealed the formation of the NCs with an average crystallite size and particle size of 36.08 and 40.22 nm, respectively. In addition, this is the first study to utilize such NCs synthesized via a single-source precursor method, offering enhanced sensor performance due to their unique structural properties. Further, these NCs were used to fabricate a urease (Ur)/Ag-S-Zn-O NCs/ITO nanobioengineered electrode for precise and sensitive electrochemical biosensing of urea. The interfacial kinetic studies revealed quasi-reversible processes with high electron transfer rates and linear current responses, indicating efficient reaction dynamics. A high diffusion coefficient and low surface concentration suggested a fast diffusion-controlled process, affirming the electrode's potential for rapid and sensitive urea detection. The biosensor demonstrated notable sensing properties such as high sensitivity (12.56 µA mM-1 cm-2) and a low detection limit (0.54 mM). The fabricated bioelectrode was highly selective and reproducible and demonstrated stability for up to 60 days. These results validate the potential of this nanobioengineered interface for next-generation biosensing applications, paving the way for advanced point-of-care diagnostics and real-time health monitoring.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Nanocomposites , Urea , Urease , Biosensing Techniques/methods , Urea/chemistry , Urea/analysis , Nanocomposites/chemistry , Urease/chemistry , Electrochemical Techniques/methods , Silver/chemistry , Particle Size , Zinc Oxide/chemistry , Electrodes , Surface Properties
2.
Environ Res ; 259: 119435, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38914255

ABSTRACT

Herein, the study introduces a novel bifunctional In2S3/MgTiO3/TiO2@N-CNT (IMTNC) nanocomposite, which is poised to revolutionize the detection and removal of clothianidin (CLD) from aquatic environments by synergistic adsorption and photodegradation. Confirmation of the material's synthesis was done using structural, optical, morphological, and chemical characterizations. An outstanding sensitivity of 2.168 µA/nM.cm2 with a linear range of 4-100 nM and a LOD of 0.04 nM, along with an exceptional elimination efficiency of 98.06 ± 0.84% for about 10 ppm CLD within 18 min was demonstrated by the IMTNC nanocomposite. Extensive studies were carried out to appraise the material's effectiveness in the presence of various interfering species, such as cations, anions, organic compounds, and different water matrices, and a comprehensive assessment of its stability throughout several cycles was made. Response Surface Methodology (RSM) study was used to determine the ideal removal conditions for improved performance. In addition, the catalytic performance in removing various other pollutants was also analyzed. Adding In2S3 and developing N-doped Carbon Nanotubes (N-CNT) increased conductivity and higher electrochemical sensing skills, improving charge transfer and increasing photocatalytic activity. This research underscores the potential of the IMTNC nanocomposite as a promising candidate for advanced environmental sensing and remediation applications.


Subject(s)
Guanidines , Insecticides , Nanotubes, Carbon , Neonicotinoids , Thiazoles , Titanium , Water Pollutants, Chemical , Guanidines/chemistry , Guanidines/analysis , Neonicotinoids/chemistry , Neonicotinoids/analysis , Thiazoles/chemistry , Thiazoles/analysis , Insecticides/chemistry , Insecticides/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Titanium/chemistry , Nanotubes, Carbon/chemistry , Nitrogen/chemistry , Nanocomposites/chemistry , Adsorption
3.
Environ Res ; 235: 116674, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37459950

ABSTRACT

This work is particularly aimed at the preparation of ZnS and Cu doped ZnS (Cu:ZnS) QDs by facile and easy technique, chemical precipitation method for the degradation of water pollutants and a simple scheme was proposed to prepare the urea-sensing system. The morphological and optical properties of the synthesized QDs was studied using high resolution transmission and scanning electron microscopes, X-ray diffraction, energy dispersive X-ray analysis, fluorescence and ultraviolet-visible spectroscopy, differential thermal and thermogravimetric analyses, Brunauer-Emmett-Teller analysis. The photocatalytic performance was systematically assessed by the photodegradation of an important pharmaceutical water pollutant, Amoxicillin (AMX) and a dye Fast Sulphon Black F (SFBF) in aqueous medium under UV light irradiation. Also, a very sensitive system was prepared by depositing the dots over an indium-tin-oxide (ITO) glass substrate for the sensing of biologically active molecule urea as it is an important monitor of public health in water and soil productivity. The results illustrated excellent photocatalytic efficiency (86.46% for AMX and 99.41% for SFBF) with stability up to four cycles of degradation reaction. The optimal photocatalyst dosage for achieving maximum removal of AMX was found to be 70 mg at a pH of 9.5, with a treatment time of 40 min. Similarly, for SFBF, the optimal photocatalyst dosage was determined to be 60 mg at pH 9, with a treatment time of 60 min. Further, the electrochemical analysis was done by fabricating Urease enzyme (UR)/Cu:ZnS QDs/ITO bioelectrode and then the fabricated bioelectrode, was utilized to determine the different concentrations of urea by cyclic voltammetry. Thus, the obtained limit of detection and sensitivity of the fabricated biosensing device for urea detection was obtained to be 0.0092 µM and 12 µA µM-1cm-2, respectively; under the optimized experimental conditions. Hence, it is anticipated that Cu:ZnS QDs can also successfully be applied as a promising material for fabrication of novel bioelectrode for urea determination and the biosensing platform is desirable and viable.


Subject(s)
Quantum Dots , Water Pollutants , Quantum Dots/chemistry , Urea , Amoxicillin , Sulfides , Zinc Compounds/chemistry , Water/chemistry
4.
Environ Res ; 235: 116573, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37437865

ABSTRACT

Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.


Subject(s)
CRISPR-Cas Systems , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Gene Editing , T-Lymphocytes/metabolism
5.
Environ Res ; 234: 116556, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37414389

ABSTRACT

The extremely widespread and ubiquitous nature of plastics, estimated to boost its global production by 26 billion tons till 2050. The large chunks of plastic waste that decomposed down to micro- or nano plastics (MNPs) leads to various ill effects on biological entities. The conventional PET detection methods lack rapid detection of microplastics due to variances in microplastic features, long-drawn-out sample pre-processing procedures and complex instrumentation. Therefore, an instantaneous colorimetric evaluation of microplastic will ensures the simplicity of conducting assays on field. Several nanoparticle-based biosensors that detects proteins, nucleic acids, metabolites operate on either cluster or disperse state of nanoparticle. However, gold nanoparticle (AuNPs) emerges an ideal scaffold for sensory element in lateral flow biosensors due to their simple surface functionalization, unique optoelectronic properties and varied colour spectrum depending on morphologies and aggregation state. In this paper an effort has been made in the form of a hypothesis using in silico tools as a basis to detect polyethylene terephthalate (PET) - most abundant type of microplastic using gold nanoparticle based lateral flow biosensor. We retrieved sequences of PET-binding synthetic peptides and modelled their 3-D structure using I-Tasser server. The best protein model for each peptide sequences are docked with PET monomers - BHET, MHET and other PET polymeric ligands, to evaluate their binding affinities. The synthetic peptide SP 1 (WPAWKTHPILRM) docked with BHET and (MHET)4 exhibits 1.5-fold increases in binding affinity as compared to reference PET anchor peptide Dermaseptin SI (DSI). The GROMACS molecular dynamics simulation studies of synthetic peptide SP 1 - BHET & - (MHET)4 complexes for 50 ns further confirmed the stable binding. RMSF, RMSD, hydrogen bonds, Rg and SASA analysis provides useful structural insights of the SP 1 complexes as compared to reference DSI. Furthermore, SP 1 functionalized AuNP-based colorimetric device was described in detail for detection of PET.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Microplastics , Plastics/analysis , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Gold , Colorimetry , Polyethylene
6.
Luminescence ; 38(7): 1393-1404, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36918255

ABSTRACT

Uric acid (UA) is a blood and urine component obtained as a metabolic by-product of purine nucleotides. Abnormalities in UA metabolism cause crystal deposition as monosodium urate and lead to various diseases such as gout, hyperuricemia, Lesch-Nyhan syndrome, etc. Monitoring these diseases requires a rapid, sensitive, selective, and portable detection approach. Therefore, this study demonstrates the hydrothermal synthesis of CuFe2 O4 /reduced graphene oxide (rGO) nanocomposite for selective detection of UA. After the nanocomposite synthesis, characterization was performed by X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, UV-visible spectrometry, atomic force spectroscopy, scanning electron microscopy, and electrochemical analysis. Furthermore, from the electrochemical analysis using cyclic voltammetry (CV), kinetic studies were carried out by varying the scan rate to obtain the diffusion coefficient, surface concentration, and rate of charge transfer to achieve a calibration curve that indicates the quasi reversible nature of the fabricated electrode with a linear regression coefficient of oxidation (R2 : 0.9992) and reduction (R2 : 0.9971) peaks. Moreover, the fabricated nonenzymatic amperometric sensor to detect UA with a linearity (R2 : 0.9989) of 1-400 µM was highly sensitive (2.75 × 10-4  mAµM-1  cm-2 ) and had a lower limit of detection (0.01231 µM) at pH 7.5 in phosphate-buffered saline solution. Therefore, the CuFe2 O4 /rGO/ITO-based nonenzymatic sensor could detect interfering agents and spiked real bovine serum samples with higher sensitivity and selectivity for UA detection.


Subject(s)
Graphite , Nanocomposites , Uric Acid , Kinetics , Graphite/chemistry , Electrochemical Techniques/methods , Nanocomposites/chemistry , Electrodes
7.
Luminescence ; 38(7): 1047-1063, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36355396

ABSTRACT

Food safety and quality are among the most significant and prevalent research areas worldwide. The fabrication of appropriate technical procedures or devices for the recognition of hazardous features in foods is essential to safeguard food materials. In the recent era, developing high-performance sensors based on carbon nanomaterial for food safety investigation has made noteworthy progress. Hence this review briefly highlights the different detection approaches (colorimetric sensor, fluorescence sensor, surface-enhanced Raman scattering, surface plasmon resonance, chemiluminescence, and electroluminescence), functional carbon nanomaterials with various dimensions (quantum dots, graphene quantum dots) and detection mechanisms. Further, this review emphasizes the assimilation of carbon nanomaterials with optical sensors to identify multiple contaminants in food products. The insights of carbon-based nanomaterials optical sensors for pesticides and insecticides, toxic metals, antibiotics, microorganisms, and mycotoxins detection are described in detail. Finally, the opportunities and future perspectives of nanomaterials-based optical analytical approaches for detecting various food contaminants are discussed.


Subject(s)
Nanostructures , Pesticides , Carbon , Food Analysis , Surface Plasmon Resonance
8.
Luminescence ; 38(7): 1347-1357, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36584881

ABSTRACT

Rare earth metals play a conspicuous role in magnetic resonance imaging (MRI) for detecting cancerous cells. The alkali metal potassium is a neurotransmitter in the sodium-potassium pump in biomedical sciences. This unique property of rare earth metals and potassium drew our attention to carry forward this study. Therefore, in this work, previously synthesized potassium (K) complexes formed by the reflux of 4-N,N-dimethylaminobenzoic acid (DBA) and potassium hydroxide in methanol, and named [(µ2-4-N,N-dimethylaminobenzoate-κO)(µ2-4-N,N-dimethylaminobenzoic acid-κO)(4-N,N-dimethylaminobenzoic acid-κO) potassium(I) coordination polymer)] were treated hydrothermally with La2 O3 nanomaterials to obtain a nanohybrid La2 O3 /K-complex. After that, the K-complex was analyzed using single-crystal X-ray diffraction and 1 H and 13 C NMR spectroscopy. In addition, the structural and morphological properties of the as-prepared nanostructured La2 O3 /K-complex were also characterized, which involved an investigation using X-ray diffraction (XRD)spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force spectroscopy (AFM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. After this, the electrochemical redox behaviour of the synthesized nanohybrid material was studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Therefore, the results from these studies revealed that the as-prepared material was a La2 O3 /K-complex that has a promising future role in sensing various analytes, as it showed effective electrocatalytic behaviour.


Subject(s)
Metals, Rare Earth , Nanostructures , Oxidation-Reduction , Microscopy, Electron, Transmission , Potassium
9.
Environ Res ; 214(Pt 1): 113821, 2022 11.
Article in English | MEDLINE | ID: mdl-35810815

ABSTRACT

Plants can achieve their proper growth and development with the help of microorganisms associated with them. Plant-associated microbes convert the unavailable nutrients to available form and make them useful for plants. Besides nutrient acquisition, soil microbes also inhibit the pathogens that cause harm to plant growth and induces defense response. Due to the beneficial activities of soil nutrient-microbe-plant interactions, it is necessary to study more on this topic and develop microbial inoculant technology in the agricultural field for better crop improvement. The soil microbes can be engineered, and plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting bacteria (PGPB) technology can be developed as well, as its application can be improved for utilization as biofertilizer, biopesticides, etc., instead of using harmful chemical biofertilizers. Moreover, plant growth-promoting microbe inoculants can enhance crop productivity. Although, scientists have discussed several tools and techniques by omics and gene editing approaches for crop improvement to avoid biotic and abiotic stress and make the plant healthier and more nutritive. However, beneficial soil microbes that help plants with the nutrient acquisition, development, and stress resistance were ignored, and farmers started utilizing chemical fertilizers. Thus, this review attempts to summarize the interaction system of plant microbes, the role of beneficiary soil microbes in the rhizosphere zone, and their role in plant health promotion, particularly in the nutrition acquisition of the plant. The review will also provide a better understanding of soil microbes that can be exploited as biofertilizers and plant growth promoters in the field to create environmentally friendly, sustainable agriculture systems.


Subject(s)
Soil Microbiology , Soil , Agriculture , Nutrients , Plant Development , Plants
10.
J Environ Manage ; 309: 114653, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35176568

ABSTRACT

With the ever-increasing global population and industrialization, it has become a call of the hour to start taking care of the environment to balance the ecosystem. For this, effective monitoring and assessment are required, which involves collecting and measuring environmental details, temporal and spatial readings of environmental data, and parameters. However, assessment of the environment is very tedious as it includes monitoring target analytes, identifying their sources, and reporting, which invariably implies that detailed environmental monitoring would be an intricate and expensive process. The traditional protocols in environmental measures are often manual and time demanding, which makes it further difficult. Moreover, several changes also occur within the environment, which could be chemical, physical, or biological, and since these environmental impacts are often cumulative, it becomes difficult to measure an isolated system. Furthermore, the chances of skipping significant results and trends become high. Also, experimental data obtained from the environmental analysis are usually non-linear and multi-variant due to different associations among various contributing variables. Therefore, it is implied that accurate measurements and environment monitoring are not using traditional analytical protocols. Thus, the need for a chemometric approach in environmental pollution analysis becomes paramount due to the inherent limitations associated with the conventional approach of analyzing environmental datasets. Chemometrics has appeared as a potential technique, which enhances the particulars of the chemical datasets by using statistical and mathematical analysis methods to analyze chemical data beyond univariate analysis. Utilizing chemometrics to study the environmental data is a revolutionary idea as it helps identify the relationship between sources of contaminations, environmental drivers, and their impact on the environment. Hence, this review critically explores the concept of chemometrics and its application in environmental pollution analysis by briefly highlighting the idea of chemometrics, its types, applications, advantages, and limitations in the environmental domain. An attempt is also made to present future trends in applications of chemometrics in environmental pollution analysis.


Subject(s)
Chemometrics , Ecosystem , Environmental Monitoring/methods , Environmental Pollution
11.
Biomater Adv ; 161: 213898, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796957

ABSTRACT

In this study, we report the preparation of bio-inspired binary CuO/ZnO nanocomposite (bb-CuO/ZnO nanocomposite) via the biological route using Bauhinia variegata flower extract following hydrothermal treatment. The prepared bb-CuO/ZnO nanocomposite was electrophoretically deposited (EPD) on indium tin oxide (ITO) substrate to develop bb-CuO/ZnO/ITO biosensing electrode which is employed for the determination of vitamin B2 (Riboflavin) through electrochemical techniques. Physicochemical assets of the prepared bb-CuO/ZnO nanocomposite have been extensively evaluated and make use of different characterization techniques including powder XRD, FT-IR, AFM, SEM, TEM, EDX, XPS, Raman, and TGA. Electrochemical characteristics of the bb-CuO/ZnO/ITO biosensing electrode have been studied towards vitamin B2 determination. Furthermore, different biosensing parameters such as response time, reusability, stability, interference, and real sample analysis were also estimated. From the linear plot of scan rate, charge transfer rate constant (Ks), surface concentration of electrode (γ), and diffusion coefficient (D) have been calculated, and these are found to be 6.56 × 10-1 s-1, 1.21 × 10-7 mol cm-2, and 6.99 × 10-3 cm2 s-1, respectively. This biosensor exhibits the linear range of vitamin B2 detection from 1 to 40 µM, including sensitivity and limit of detection (LOD) of 1.37 × 10-3 mA/µM cm2 and 0.254 µM, respectively. For higher concentration range detection linearity is 50-100 µM, with sensitivity and the LOD of 1.26 × 10-3 mA/µM cm2 and 0.145 µM, respectively. The results indicate that the bio-inspired nanomaterials are promising sustainable biosensing platforms for various food and health-based biosensing devices.


Subject(s)
Bauhinia , Biosensing Techniques , Copper , Electrochemical Techniques , Flowers , Nanocomposites , Plant Extracts , Riboflavin , Zinc Oxide , Copper/chemistry , Copper/analysis , Plant Extracts/chemistry , Nanocomposites/chemistry , Electrochemical Techniques/methods , Flowers/chemistry , Biosensing Techniques/methods , Zinc Oxide/chemistry , Bauhinia/chemistry , Riboflavin/analysis , Riboflavin/chemistry , Electrodes , Limit of Detection
12.
Micromachines (Basel) ; 15(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38930647

ABSTRACT

Conjugated polymers (CPs) offer the potential for sustainable semiconductor devices due to their low cost and inherent molecular self-assembly. Enhanced crystallinity and molecular orientation in thin films of solution-processable CPs have significantly improved organic electronic device performance. In this work, three methods, namely spin coating, dip coating, and unidirectional floating-film transfer method (UFTM), were utilized with their parametric optimization for fabricating RR-P3HT films. These films were then utilized for their characterization via optical and microstructural analysis to elucidate dominant roles of molecular orientation and crystallinity in controlling charge transport in organic field-effect transistors (OFETs). OFETs fabricated by RR-P3HT thin films using spin coating and dip coating displayed field-effect mobility (µ) of 8.0 × 10-4 cm2V-1s-1 and 1.3 × 10-3 cm2V-1s-1, respectively. This two-time enhancement in µ for dip-coated films was attributed to its enhanced crystallinity. Interestingly, UFTM film-based OFETs demonstrated µ of 7.0 × 10-2 cm2V-1s-1, >100 times increment as compared to its spin-coated counterpart. This superior device performance is attributed to the synergistic influence of higher crystallinity and molecular orientation. Since the crystallinity of dip-coated and UFTM-thin films are similar, ~50 times improved µ of UFTM thin films, this suggests a dominant role of molecular orientation as compared to crystallinity in controlling the charge transport.

13.
Int J Biol Macromol ; 265(Pt 2): 130867, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508557

ABSTRACT

This study focuses on the fabrication of a novel sensing platform on a screen-printed carbon electrode, modified by a combination of hydrothermally synthesized iron dioxide (ε-Fe2O3) nanoparticles and Chitosan (CS) biopolymer. This unique organic-inorganic hybrid material was developed for Electrochemical Impedance Spectroscopy (EIS) sensing, specifically targeting heavy metal ions that include Hg2+, Cd2+, as well as Pb2+. The investigation encompassed a comprehensive analysis of various aspects of the prepared Fe2O3 and CS/ε-Fe2O3 nanocomposites, including phase identification, determination of crystallite size, assessment of surface morphology, etc. CS/ε-Fe2O3 was drop-casted and deposited on the Screen-Printed Electrode (SPE). The resulting sensor exhibited excellent performance in the precise and selective quantification of Hg2+, Cd2+, and Pb2+ ions, with minimal interference from other substances. The fabricated sensor exhibits excellent performance as the detection range for Hg2+, Cd2+, and Pb2+ ions linearity is 2-20 µM, sensitivity, and LOD are 243 Ω/ µM cm2 and 0.191 µM, 191 Ω/µM cm2, and 0.167 µM, 879 Ω/ µM cm2, and 0.177 µM respectively. The stability of the CS/ε-Fe2O3/SPE electrode is demonstrated by checking its conductivity for up to 60 days for Hg2+, Cd2+, and Pb2+ ions. The reusability of the fabricated electrode is 14 scans, 13 scans, and 12 scans for Hg2+, Cd2+, and Pb2+ ions respectively. The findings indicate the successful development of an innovative CS/ε-Fe2O3 electrode for the EIS sensing platform. This platform demonstrates notable potential for addressing the critical need for efficient and sensitive EIS sensors capable of detecting a range of hazardous heavy metal ions, including Hg2+, Cd2+, and Pb2+.


Subject(s)
Chitosan , Mercury , Metals, Heavy , Nanoparticles , Cadmium/chemistry , Lead , Carbon , Metals, Heavy/analysis , Mercury/chemistry , Electrodes , Water/chemistry , Ions
14.
ACS Appl Bio Mater ; 6(11): 4549-4571, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37852204

ABSTRACT

Silver nanoparticles developed via biosynthesis are the most fascinating nanosized particles and encompassed with excellent physicochemical properties. The bioinspired nanoparticles with different shapes and sizes have attracted huge attention due to their stability, low cost, environmental friendliness, and use of less hazardous chemicals. This is an ideal method for synthesizing a range of nanosized metal particles from plants and biomolecules. Optical biosensors are progressively being fabricated for the attainment of sustainability by using opportunities offered by nanotechnology. This review focuses mainly on tuning the optical properties of the metal nanoparticles for optical sensing to explore the importance and applications of bioinspired silver nanoparticles. Further, this review deliberates the role of bioinspired silver nanoparticles (Ag NPs) in biomedical, agricultural, environmental, and energy applications. Profound insight into the antimicrobial properties of these nanoparticles is also appreciated. Tailor-made bioinspired nanoparticles with effectuating characteristics can unsurprisingly target tumor cells and distribute enwrapped payloads intensively. Existing challenges and prospects of bioinspired Ag NPs are also summarized. This review is expected to deliver perceptions about the progress of the next generation of bioinspired Ag NPs and their outstanding performances in various fields by promoting sustainable practices for fabricating optical sensing devices.


Subject(s)
Metal Nanoparticles , Silver , Nanotechnology
15.
Int J Biol Macromol ; 253(Pt 8): 127587, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37866579

ABSTRACT

Neurodegenerative disorders are one of the significant challenges to the aging society, as per the United Nations, where 1 in 6 people globally over 65 years of age are expected to suffer by 2050. The exact pathophysiological root of these disorders is although not known adequately, but reduced dopamine (most significant neurotransmitters) levels have been reported in people affected by Parkinson's disease. Sensitive detection and effective monitoring of dopamine can help to diagnose these neurodegenerative disorders at a very early stage, which will help to properly treat these disorders and slow down their progression. Therefore, it is crucial to detect physiological and clinically acceptable amounts of dopamine with high sensitivity and selectivity in basic pathophysiology research, medication, and illness diagnosis. Here in this present investigation, nano-bio-engineered stable chitosan stabilized copper iodide nanoparticles (CS@CuI NPs) were synthesized to engineer the active biosensing platform for developing dopamine biosensors. Initially, the as-synthesized nano-bio-engineered CS@CuI NPs were subjected to its drop-casting onto an Indium tin oxide (ITO) conducting glass substrate. This substrate platform was then utilized to immobilize tyrosinase (Tyr) enzyme by drop-casting to fabricate Tyr/CS@CuI NPs/ITO bioelectrode for the ultrasensitive determination of dopamine. Several techniques were used to characterize the structural, optical, and morphological properties of the synthesized CS@CuI NPs and Tyr/CS@CuI NPs/ITO bioelectrode. Further, the as-prepared bioelectrode was evaluated for its suitability and electrocatalytic behaviour towards dopamine by cyclic voltammetry. A perusal of the electroanalytic results of the fabricated biosensor revealed that under the optimized experimental conditions, Tyr/CS@CuI NPs/ITO bioelectrode exhibits a very high electrochemical sensitivity of 11.64 µA µM-1 cm-2 towards dopamine with the low limit of detection and quantification of 0.02 and 0.386 µM, respectively. In addition, the fabricated bioelectrode was stable up to 46 days with only 4.82 % current loss, reusable till 20 scans, and it also performed effectively while real sample analysis. Therefore, the nano-bio-engineered biosensor platform being reported can determine deficient dopamine levels in a very selective and sensitive manner, which can help adequately manage neurodegenerative disorders, further slowing down the disease progression.


Subject(s)
Biosensing Techniques , Chitosan , Nanoparticles , Neurodegenerative Diseases , Humans , Chitosan/chemistry , Dopamine , Copper , Iodides , Nanoparticles/chemistry , Monophenol Monooxygenase , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes
16.
ACS Appl Bio Mater ; 6(12): 5842-5853, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38054277

ABSTRACT

A propitious biosensor for adrenaline (AD) detection in bovine serum albumin (BSA) real samples, which can be used for diagnosis and treatment of neurodegenerative disorders, is reported here. The biosensor consists of a La/ZF/rGO/ITO bioelectrode, which is fabricated by electrophoretic deposition of zinc ferrite/reduced graphene oxide (ZF/rGO) nanohybrid followed by drop casting of laccase (La) enzymes. The material characterization and electrochemical studies revealed that the ZF/rGO nanohybrid enhanced the electroactive surface and facilitated direct electron transfer between the electrode and electrolyte interface, resulting in enhanced electrocatalytic performance. The cyclic voltammetry and electrochemical impedance spectroscopy results asserted that the ZF/rGO nanohybrid decreased the charge-transfer resistance (Rct) and increased the surface adsorption, leading to a high diffusion coefficient (D) of 0.192 cm2/s. The biosensor exhibited a high sensitivity of 0.71 Ω/µM cm2, a good linear range (0.1 to 140 µM with R2 = 0.98), and a low limit of detection (LOD) is 12.5 µM, demonstrating the synergic effect of ZF and rGO in the La/ZF/rGO/ITO bioelectrode with AD. The biosensor also exhibited high selectivity and stability (55 days) in the presence of interfering substances and in BSA samples, with a recovery percentage close to 100 ± 5% RSD, indicating its potential biosensing applications for real-world applications in disease diagnostics, monitoring, and treatment.


Subject(s)
Biosensing Techniques , Neurodegenerative Diseases , Humans , Laccase , Electrochemical Techniques/methods , Epinephrine , Electric Impedance , Biosensing Techniques/methods , Electrodes
17.
Front Med Technol ; 5: 1236107, 2023.
Article in English | MEDLINE | ID: mdl-37521721

ABSTRACT

Nanotechnology has become one of the most rapid, innovative, and adaptable sciences in modern science and cancer therapy. Traditional chemotherapy has limits owing to its non-specific nature and adverse side effects on healthy cells, and it remains a serious worldwide health issue. Because of their capacity to specifically target cancer cells and deliver therapeutic chemicals directly to them, nanoparticles have emerged as a viable strategy for cancer therapies. Nanomaterials disclose novel properties based on size, distribution, and shape. Biosynthesized or biogenic nanoparticles are a novel technique with anti-cancer capabilities, such as triggering apoptosis in cancer cells and slowing tumour growth. They may be configured to deliver medications or other therapies to specific cancer cells or tumour markers. Despite their potential, biosynthesized nanoparticles confront development obstacles such as a lack of standardisation in their synthesis and characterization, the possibility of toxicity, and their efficiency against various forms of cancer. The effectiveness and safety of biosynthesized nanoparticles must be further investigated, as well as the types of cancer they are most successful against. This review discusses the promise of biosynthesized nanoparticles as a novel approach for cancer therapeutics, as well as their mode of action and present barriers to their development.

18.
Heliyon ; 9(9): e19890, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809974

ABSTRACT

Goat milk gels (GMGs) are popular food due to their high water content, low-calorie density, appealing taste, texture enhancers, stability, and satiety-enhancing characteristics, making them ideal for achieving food security and zero hunger. The GMGs were optimized using the central composite design matrix of response surface methodology using goat milk powder (35-55 g), whole milk powder (10-25 g), and potato powder (10-15 g) as independent variables. In contrast, complex modulus, flow stress, and forward extrudability were chosen as dependent variables. The maximum value of complex modulus 33670.9 N, good flow stress 7863.6 N, and good extrudability 65.32 N was achieved under optimal conditions. The optimized goat milk gel was fortified with ascorbic acid-coated iron oxide nanoparticle (magnetic nature) decorated alginate-chitosan nanoparticles (AA-MNP@CANPs), making it nutritionally rich in an economically feasible way-the decorated AA-MNP@CANPs characterized for size, shape, crystallinity, surface charge, and optical characteristics. Finally, the optimized fortified smart GMGs were further characterized via Scanning electron microscopy, Rheology, Texture profile analysis, Fourier transforms infrared (FTIR), and X-Ray Diffraction (XRD). The fortified smart GMGs carry more nutritional diversity, targeted iron delivery, and the fundamental sustainability development goal of food security.

19.
Int J Biol Macromol ; 253(Pt 4): 126886, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37709228

ABSTRACT

Zinc-based nanostructures are known for their numerous potential biomedical applications. In this context, the biosynthesis of nanostructures using plant extracts has become a more sustainable and promising alternative to effectively replace conventional chemical methods while avoiding their toxic impact. In this study, following a low-temperature calcination process, a green synthesis of Zn-hydroxide-based nanostructure has been performed using an aqueous extract derived from the leaves of Litchi chinensis, which is employed as a lignocellulose waste biomass known to possess a variety of phytocompounds. The biogenic preparation of Zn-hydroxide based nanostructures is enabled by bioactive compounds present in the leaf extract, which act as reducing and capping agents. In order to evaluate its physicochemical characteristics, the produced Zn-hydroxide-based nanostructure has been subjected to several characterization techniques. Further, the multifunctional properties of the prepared Zn-hydroxide-based nanostructure have been evaluated for antioxidant, antimicrobial, and anticancer activity. The prepared nanostructure showed antibacterial efficacy against Bacillus subtilis and demonstrated its anti-biofilm activity as evaluated through the Congo red method. In addition, the antioxidant activity of the prepared nanostructure has been found to be dose-dependent, wherein 91.52 % scavenging activity could be recorded at 200 µg/ml, with an IC50 value of 45.22 µg/ml, indicating the prepared nanostructure has a high radical scavenging activity. Besides, the in vitro cytotoxicity investigation against HepG2 cell lines explored that the as-prepared nanostructure exhibited a higher cytotoxic effect and 73.21 % cell inhibition could be noticed at 25.6 µg/ml with an IC50 of 2.58 µg/ml. On the contrary, it was found to be significantly lower in the case of HEK-293 cell lines, wherein ~47.64 % inhibition could be noticed at the same concentration. These findings might be further extended to develop unique biologically derived nanostructures that can be extensively evaluated for various biomedical purposes.


Subject(s)
Litchi , Metal Nanoparticles , Nanostructures , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Litchi/chemistry , Biomass , HEK293 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydroxides , Plant Extracts/pharmacology , Plant Extracts/chemistry , Metal Nanoparticles/chemistry
20.
RSC Adv ; 13(18): 12411-12429, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37091622

ABSTRACT

To minimize the usage of non-renewable resources and to maintain a sustainable environment, the exploitation of green nanobiopolymers should be enhanced. Biopolymers are generally developed from various microorganisms and plants in the specified condition. This review article discusses the current advances and trends of biopolymers, particularly in the arena of nanotechnology. In addition, discussion on various synthesis steps and structural characterization of green polymer materials like cellulose, chitin, and lignin is also encompassed. This article aims to coordinate the most recent outputs and possible future utilization of nanobiopolymers to the ecosystem with negligible effects by promoting the utilities of polymeric materials like polycaprolactones, starch, and nanocellulose. Additionally, strategic modification of cellulose into nanocellulose via rearrangement of the polymeric compound to serve various industrial and medical purposes has also been highlighted in the review. Specifically, the process of nanoencapsulation and its advancements in terms of nutritional aspects was also presented. The potential utility of green nanobiopolymers is one of the best cost-effective alternatives concerning circular economy and thereby helps to maintain sustainability.

SELECTION OF CITATIONS
SEARCH DETAIL