ABSTRACT
Oral bioavailability of glibenclamide (Glb) was appreciably improved by the formation of an amorphous solid dispersion with Poloxamer-188 (P-188). Poloxamer-188 substantially enhanced the solubility and thereby the dissolution rate of the biopharmaceutics classification system (BCS) class II drug Glb and simultaneously exhibited a better stabilizing effect of the amorphous solid dispersion prepared by the solvent evaporation method. The physical state of the dispersed Glb in the polymeric matrix was characterized by differential scanning calorimetry, X-ray diffraction, scanning electron microscope and Fourier transform infrared studies. In vitro drug release in buffer (pH 7.2) revealed that the amorphous solid dispersion at a Glb-P-188 ratio of 1:6 (SDE4) improved the dissolution of Glb by 90% within 3 h. A pharmacokinetic study of the solid dispersion formulation SDE4 in Wistar rats showed that the oral bioavailability of the drug was greatly increased as compared with the market tablet formulation, Daonil®. The formulation SDE4 resulted in an AUC0-24h ~2-fold higher. The SDE4 formulation was found to be stable during the study period of 6 months.
Subject(s)
Biological Availability , Glyburide , Poloxamer , Rats, Wistar , Animals , Glyburide/pharmacokinetics , Glyburide/chemistry , Glyburide/blood , Glyburide/administration & dosage , Rats , Male , Poloxamer/chemistry , Poloxamer/pharmacokinetics , Drug Stability , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods , Calorimetry, Differential Scanning , SolubilityABSTRACT
INTRODUCTION: Chromatography and spectroscopy are nowadays well-validated techniques allowing to isolate and purify different class of natural products from the genus Codonopsis. Several categories of phytochemicals with drug like properties have been selectively extracted, isolated, characterised by this methodology. OBJECTIVES: The present review aims to provide up-to-date and comprehensive information on the chromatography, phytochemistry and pharmacology of natural products of Codonopsis with an emphasis on the search for natural products having various biological activities and the semi-synthetic derivatives of bioactive ones and to highlight current gaps in knowledge. MATERIALS AND METHODS: A literature search was performed in the SciFinder Scholar, PubMed, Medline, and Scopus databases. RESULTS: During the period covered in this review, several classes of compounds have been reported from genus Codonopsis. Codonopsis pilosula and Codonopsis lanceolata are the most popular in the genus especially as per phytochemical and bioactive studies. Phytochemical investigation demonstrates that Codonopsis species contain mainly xanthones, flavonoids, alkaloids, polyacetylenes, phenylpropanoids, triterpenoids and polysaccharides, which contribute to numerous bioactivities. The major bioactive compounds isolated were used for semi-synthetic modification to increase the chance to discover lead compound. CONCLUSIONS: It can be concluded that genus Codonopsis has been used as traditional medicines and food materials around the world over years due to chemical constituents with diverse structural types, exhibiting extensive pharmacological activities in immune system, blood system, cardiovascular system, central nervous system, digestive system, and so forth, with almost no obvious toxicity and side effect. Therefore, Codonopsis can be used as a promising ethnopharmacological plant source.
Subject(s)
Biological Products , Codonopsis , Biological Products/pharmacology , Ethnopharmacology/methods , Medicine, Traditional , Plant Extracts/chemistry , Phytochemicals/analysisABSTRACT
In the present study, a series of benzotriazole-based ß-amino alcohols were efficiently synthesized in excellent yields via aminolysis of benzotriazolated epoxides under catalyst- and solvent-free conditions. Further these ß-amino alcohols were successfully utilized to synthesize the corresponding benzotriazole-based oxazolidine heterocyclic derivatives. All the synthesized compounds were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectroscopy for structure elucidation. The compounds were subjected to a microtiter plate-based antimicrobial assay. The antimicrobial activity results reveal that the compounds 4a, 4e, and 5f were found to be active against Staphylococcus aureus (ATCC-25923) with minimum inhibitory concentrations (MICs) of 32, 8, and 64 µM, respectively. Also, the compounds 4a, 4e, 4k, 4i, 4m, 4n, 4o, 5d, 5e, 5f, 5g, and 5h showed effective activity against Bacillus subtilis (ATCC 6633) with MICs of 64, 16, 16, 16, 64, 16, 64, 64, 32, 64, 8, and 16 µM, respectively. A biological investigation was conducted, including molecular docking of two compounds with several receptors to identify and confirm the best ligand-protein interactions. Hence, this study found a significant strategy to diversify the chemical molecules. The synthesized compounds play a potential role as an antibacterial intensifier against some pathogenic bacteria for the development of antibacterial substances.
ABSTRACT
Herein, we report a novel, simple, specific, accurate and cost-friendly validated reverse phase-high performance liquid chromatographic (RP-HPLC) method for the quantification of second generation sulphonylurea based antidiabetic drug, glibenclamide (GLB) in rat plasma and its application to calculate pharmacokinetic parameters in wistar rats. The internal standard used was flufenamic acid. The chromatographic separation was conducted on C18 column (250 mm × 4.6 mm x 5 µm, Agilent-Zorbax, SB) using isocratic elution with mobile phase containing Acetonitrile: Water (1:1; v/v) pH adjusted to 4.0 with 0.03 % glacial acetic acid and detected by photo-diode array as detector. Calibration curves made in the rat plasma were linear in the range of 50-1200 ng/ml with r2 = 0.998. The LLOQ was 40 ng/ml. This method was effectively applied for pharmacokinetic studies of Glibenclamide following administration through oral route as solid dispersion formulation to Wistar rats. Several methods are available in the literature which can be employed for the quantification of Glibenclamide but such methods are tedious, provide lower sensitivity, less simultaneous resolution and are time-consuming. Therefore the present methods suits best for the quantification of Glibenclamide from Wistar rats.
ABSTRACT
A microwave-assisted efficient and direct synthetic route to 1,3-benzoxazine-2-thione N-nucleos ides via CeCl3.7H2O/NaI catalyzed cycloisomerization of salicylaldehyde 4-(ß-D-ribofuranosyl) thiosemicarbazones followed by reductive dehydrazination is reported.