Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430637

ABSTRACT

Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.


Subject(s)
Graphite , Hydrogels , Bentonite , Clay , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Water/chemistry
2.
J Mater Chem B ; 12(2): 525-539, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38113029

ABSTRACT

Fluorescence-based bioimaging is an imperative approach with high clinical relevance in healthcare applications and biomedical research. The field of bioimaging plays an indispensable role in gaining insight into the internal architecture of cells/tissues and comprehending the physiological functions associated with biological systems. With the utility of piezoelectric nanomaterials, the bioelectric interface has been significantly investigated, leading to remarkable clinical relevance. Herein, we have developed barium titanate nanoparticle (BT) coated gold nanoclusters (AuNCs) in the presence and absence of an electromagnetic field (EMF). In this work, the effect of low (0.6 G) and high (2.0 G) EMFs on the structural arrangement of these piezoelectric nanocomposites (ABT) has been extensively studied with the help of X-ray diffraction (XRD), high diffraction resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Furthermore, the two derivatives of ABT i.e. 0.6 ABT and 2.0 ABT have been evaluated for electrochemical behavior for their applicability as a candidate for exploring the bioelectric interface. Additionally, ABT, 0.6 ABT, and 2.0 ABT have been explored for cytocompatibility and bioimaging applications. The proposed piezoelectric nanocomposite, as a multifunctional platform, has enormous proficiency in the field of bioimaging and the capability to be utilized across the bioelectric interface.


Subject(s)
Nanocomposites , Nanoparticles , Barium , Gold/chemistry , Nanocomposites/chemistry
3.
Food Res Int ; 177: 113907, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225146

ABSTRACT

Substantial efforts are underway to tackle the current challenges of sustainability and environmental impacts linked to orthodox animal agriculture. This had led to advancement in food innovation guiding the fabrication of edible scaffolds based cultured meat. This current research work aims to develop and validate a new approach in fabricating a 3D porous scaffold of decellularized apple coated with a polymer mixture of gelatin/alginate for cultivated meat production. The fabricated noncoated (A) and coated (CA) 3D scaffolds presented different ratios of pore sizes with the medium-sized pores (100-250 µm) being higher in the case of CA. The water absorption capacity of CA (∼64 %) was almost two folds compared to A (∼31 %) with delayed digestion in the presence of gastric simulated juice with or without pepsin. Both the scaffolds showed the capability to adhere and proliferate muscle satellite cells as single cell culture and muscle satellite along with NIH/3T3 fibroblast cells as co-culture. However, the CA scaffolds showed enhanced capability to adhere and proliferate the two cell lines on its surface compared to A. This work demonstrates an efficient way to fabricate decellularized plant scaffolds with high potential to be used in the production of cultured meat for the food industry.


Subject(s)
Malus , Tissue Scaffolds , Animals , Alginates , Gelatin , In Vitro Meat
4.
Int J Biol Macromol ; : 133597, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960232

ABSTRACT

BACKGROUND: Bone tissue engineering endows alternates to support bone defects/injuries that are circumscribed to undergo orchestrated process of remodeling on its own. In this regard, hydrogels have emerged as a promising platform that can confront irregular defects and encourage in situ bone repair. METHODS: In this study, we aimed to develop a new approach for bone tissue regeneration by developing an alginate based composite hydrogel incorporating selenium doped biphasic calcium phosphate nanoparticles, and retinoic acid. The fabricated hydrogel was physiochemically evaluated for morphological, bonding, and mechanical behavior. Additionally, the biological response of the fabricated hydrogel was evaluated on MC3T3-E1 pre-osteoblast cells. RESULTS: The developed composite hydrogel confers excellent biocompatibility, and osteoconductivity owing to the presence of alginate, and biphasic calcium phosphate, while selenium presents pro osteogenic, antioxidative, and immunomodulatory properties. The hydrogels exhibited highly porous microstructure, superior mechanical attributes, with enhanced calcification, and biomineralization abilities in vitro. SIGNIFICANCE: By combining the osteoconductive properties of biphasic calcium phosphate with multifaceted benefits of selenium and retinoic acid, the fabricated composite hydrogel offers a potential transformation in the landscape of bone defect treatment. This strategy could direct a versatile and effective approach to tackle complex bone injuries/defects and present potential for clinical translation.

5.
Chem Commun (Camb) ; 59(79): 11819-11822, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37721201

ABSTRACT

In the current study, we synthesized thiolated chitosan-stabilized gold-coated, gadolinium-doped hafnium oxide nanoparticles (CAuGH NPs) with the capability of acting as a multifunctional system to deliver anticancer drug doxorubicin (DOX), to enhance radiosensitization by ROS generation, and to provide magnetic resonance (MR) imaging contrast for biomedical applications.


Subject(s)
Chitosan , Nanoparticles , Precision Medicine , Gold , Doxorubicin/pharmacology , Magnetic Resonance Imaging , Contrast Media
6.
Biomater Adv ; 143: 213184, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36371969

ABSTRACT

Herein, we report redox responsive, colon cancer targeting poly(allylamine) (PA)/eudragit S-100 (EU) nanoparticles (PAEU NPs) (≈59 nm). These disulfide crosslinked PAEU NPs are developed via air oxidation of thiolated PA and thiolated EU, eliminating the need of any external crosslinking agent for dual drug delivery. PAEU NPs can effectively encapsulate both hydrophilic doxorubicin (DOX) and hydrophobic curcumin (Cur) drug with ≈85 % and ≈97 % encapsulation efficiency respectively. Here, the combination of drugs having different anticancer mechanism offers the possibility of developing nanosystem with enhanced anticancer efficacy. The developed PAEU NPs show good colloidal stability and low drug release under physiological conditions, while high DOX (≈98 %) and Cur (≈93 %) release is observed in reducing environment (10 mM GSH). Further, DOX and Cur loaded PAEU NPs exhibit higher cancer cell killing efficiency as compared to individual free drugs. In vivo biodistribution studies with Balb/C mice display the retention of PAEU NPs in the colon region up to 24 h presenting the developed approach as an efficient way for colorectal cancer therapy.


Subject(s)
Allylamine , Colorectal Neoplasms , Curcumin , Nanoparticles , Mice , Animals , Tissue Distribution , Doxorubicin/therapeutic use , Oxidation-Reduction , Colorectal Neoplasms/drug therapy
7.
Biomater Sci ; 10(19): 5472-5497, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-35994005

ABSTRACT

In large bone defects, inadequate vascularization within the engineered constructs has been a major challenge in developing clinically impactful products. It is fairly determined that bone tissues and blood vessels are established concurrently throughout tissue repairs after an injury. Thus, the coupling of angiogenesis-osteogenesis is an essential course of action in bone tissue restoration. The manufacture of biomaterial-based scaffolds plays a decisive role in stimulating angiogenic and osteogenic progressions (instruction of neovascularization and bone mineralization). Bone hydrogels with optimal conditions are more efficient at healing bone defects. There has been a remarkable advancement in producing bone substitutes in the tissue engineering area, but the sufficient and timely vascularization of engineered constructs for optimal tissue integration and regeneration is lacking due to mismatch in the scaffold characteristics and new bone tissue reconstruction. Therefore, various key challenges remain to be overcome. A deep understanding of angiogenesis and osteogenesis progressions is required to manufacture bone hydrogels with satisfactory results. The current review briefly discusses the fundamentals of bone tissues, the significance of angiogenesis-osteogenesis progressions and their inducers, the efficacy of biomaterials and composite hydrogel-promoted neo-vasculogenesis (i.e. angiogenesis) and bone mineralization (i.e. osteogenesis), and related challenges, including future research directions.


Subject(s)
Bone Substitutes , Osteogenesis , Biocompatible Materials/pharmacology , Bone Regeneration , Humans , Hydrogels , Neovascularization, Pathologic , Neovascularization, Physiologic , Tissue Engineering/methods , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL