Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473851

ABSTRACT

N-heterocyclic carbene (NHC) silver(I) and gold(I) complexes have found different applications in various research fields, as in medicinal chemistry for their antiproliferative, anticancer, and antibacterial activity, and in chemistry as innovative and effective catalysts. The possibility of modulating the physicochemical properties, by acting on their ligands and substituents, makes them versatile tools for the development of novel metal-based compounds, mostly as anticancer compounds. As it is known, chemotherapy is commonly adopted for the clinical treatment of different cancers, even though its efficacy is hampered by several factors. Thus, the development of more effective and less toxic drugs is still an urgent need. Herein, we reported the synthesis and characterization of new silver(I) and gold(I) complexes stabilized by caffeine-derived NHC ligands, together with their biological and catalytic activities. Our data highlight the interesting properties of this series as effective catalysts in A3-coupling and hydroamination reactions and as promising anticancer, anti-inflammatory, and antioxidant agents. The ability of these complexes in regulating different pathological aspects, and often co-promoting causes, of cancer makes them ideal leads to be further structurally functionalized and investigated.


Subject(s)
Coordination Complexes , Heterocyclic Compounds , Methane/analogs & derivatives , Neoplasms , Humans , Silver/chemistry , Gold/chemistry , Caffeine , Anti-Bacterial Agents/pharmacology , Methane/chemistry , Heterocyclic Compounds/chemistry , Coordination Complexes/chemistry
2.
Medicina (Kaunas) ; 60(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256423

ABSTRACT

The study of migraine is based on the complexity of the pathology, both at the pathophysiological and epidemiological levels. Although it affects more than a billion people worldwide, it is often underestimated and underreported by patients. Migraine must not be confused with a simple headache; it is a serious and disabling disease that causes considerable limitations in the daily life of afflicted people, including social, work, and emotional effects. Therefore, it causes a daily state of suffering and discomfort. It is important to point out that this pathology not only has a decisive impact on the quality of life of those who suffer from it but also on their families and, more generally, on society as a whole. The clinical picture of migraine is complex, with debilitating unilateral or bilateral head pain, and is often associated with characteristic symptoms such as nausea, vomiting, photophobia, and phonophobia. Hormonal, environmental, psychological, dietary, or other factors can trigger it. The present review focuses on the analysis of the physiopathological and pharmacological aspects of migraine, up to the correct dietary approach, with specific nutritional interventions aimed at modulating the symptoms. Based on the symptoms that the patient experiences, targeted and specific therapy is chosen to reduce the frequency and severity of migraine attacks. Specifically, the role of calcitonin gene-related peptide (CGRP) in the pathogenesis of migraine is analyzed, along with the drugs that effectively target the corresponding receptor. Particularly, CGRP receptor antagonists (gepants) are very effective drugs in the treatment of migraine, given their high diffusion in the brain. Moreover, following a ketogenic diet for only one or two months has been demonstrated to reduce migraine attacks. In this review, we highlight the diverse facets of migraine, from its physiopathological and pharmacological aspects to prevention and therapy.


Subject(s)
Calcitonin Gene-Related Peptide , Diet, Ketogenic , Migraine Disorders , Humans , Calcitonin Gene-Related Peptide/genetics , Headache , Migraine Disorders/drug therapy , Quality of Life , Calcitonin Gene-Related Peptide Receptor Antagonists/therapeutic use
3.
J Transl Med ; 21(1): 718, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833739

ABSTRACT

BACKGROUND: The complex interplay between health, lifestyle and genetics represents a critical area of research for understanding and promoting human well-being. Importantly, genetics plays a key role in determining individual susceptibility to disease and response to lifestyle. The aim of the present study was to identify genetic factors related to the metabolic/inflammatory profile of adolescents providing new insights into the individual predisposition to the different effects of the substances from the environment. METHODS: Association analysis of genetic variants and biochemical parameters was performed in a total of 77 healthy adolescents recruited in the context of the DIMENU study. RESULTS: Polymorphisms of 3-hydroxy-3-methylglutaril coenzyme A reductase (HMGCR; rs142563098), C-reactive protein gene (CRP; rs1417938, rs1130864), cholesteryl ester transfer protein (CETP; rs5030708), interleukin (IL)-10 (IL-10; rs3024509) genes were significantly associated (p < 0.05) with various serum metabolic parameters. Of particular interest were also the correlations between the HMGCRpolymorphism (rs3846663) and tumor necrosis factor (TNF)-α levels, as well Fatty-acid desaturase (FADS) polymorphism (rs7481842) and IL-10 level opening a new link between lipidic metabolism genes and inflammation. CONCLUSION: In this study, we highlighted associations between single nucleotide polymorphisms (SNPs) and serum levels of metabolic and inflammatory parameters in healthy young individuals, suggesting the importance of genetic profiling in the prevention and management of chronic disease.


Subject(s)
Interleukin-10 , Polymorphism, Single Nucleotide , Adolescent , Humans , Alleles , Cholesterol Ester Transfer Proteins/genetics , Genetic Predisposition to Disease , Genotype , Hydroxymethylglutaryl CoA Reductases/genetics , Inflammation/genetics , Polymorphism, Single Nucleotide/genetics , Tumor Necrosis Factor-alpha
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36835056

ABSTRACT

Breast cancer (BC) is one of the most widely diagnosed cancers and a leading cause of cancer death among women worldwide. Globally, BC is the second most frequent cancer and first most frequent gynecological one, affecting women with a relatively low case-mortality rate. Surgery, radiotherapy, and chemotherapy are the main treatments for BC, even though the latter are often not aways successful because of the common side effects and the damage caused to healthy tissues and organs. Aggressive and metastatic BCs are difficult to treat, thus new studies are needed in order to find new therapies and strategies for managing these diseases. In this review, we intend to give an overview of studies in this field, presenting the data from the literature concerning the classification of BCs and the drugs used in therapy for the treatment of BCs, along with drugs in clinical studies.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Health Status
5.
Int J Mol Sci ; 24(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36768955

ABSTRACT

Selenium (Se) is a naturally occurring metalloid element essential to human and animal health in trace amounts but it is harmful in excess. Se plays a substantial role in the functioning of the human organism. It is incorporated into selenoproteins, thus supporting antioxidant defense systems. Selenoproteins participate in the metabolism of thyroid hormones, control reproductive functions and exert neuroprotective effects. Among the elements, Se has one of the narrowest ranges between dietary deficiency and toxic levels. Its level of toxicity may depend on chemical form, as inorganic and organic species have distinct biological properties. Over the last decades, optimization of population Se intake for the prevention of diseases related to Se deficiency or excess has been recognized as a pressing issue in modern healthcare worldwide. Low selenium status has been associated with an increased risk of mortality, poor immune function, cognitive decline, and thyroid dysfunction. On the other hand, Se concentrations slightly above its nutritional levels have been shown to have adverse effects on a broad spectrum of neurological functions and to increase the risk of type-2 diabetes. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important issue to elucidate its effect on human diseases. This review gives an overview of the role of Se in human health highlighting the effects of its deficiency and excess in the body. The biological activity of Se, mainly performed through selenoproteins, and its epigenetic effect is discussed. Moreover, a brief overview of selenium phytoremediation and rhizofiltration approaches is reported.


Subject(s)
Selenium , Animals , Humans , Selenium/metabolism , Selenoproteins/metabolism , Antioxidants/therapeutic use , Antioxidants/metabolism , Nutritional Status
6.
Int J Mol Sci ; 23(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36499170

ABSTRACT

Metal complexes play a crucial role in pharmaceutical sciences owing to their wide and significant activities. Schiff bases (SBs) are multifaceted pharmacophores capable of forming chelating complexes with various metals in different oxidation states. Complexes with SBs are extensively studied for their numerous advantages, including low cost and simple synthetic strategies. They have been reported to possess a variety of biological activities, including antimicrobial, anticancer, antioxidant, antimalarial, analgesic, antiviral, antipyretic, and antidiabetic ones. This review summarizes the most recent studies on the antimicrobial and antiproliferative activities of SBs-metal complexes. Moreover, recent studies regarding mononuclear and binuclear complexes with SBs are described, including antioxidant, antidiabetic, antimalarial, antileishmanial, anti-Alzheimer, and catecholase activities.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Coordination Complexes/pharmacology , Schiff Bases , Metals , Antioxidants/pharmacology , Data Collection
7.
Molecules ; 27(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500655

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the seventh known human coronavirus, and it was identified in Wuhan, Hubei province, China, in 2020. It caused the highly contagious disease called coronavirus disease 2019 (COVID-19), declared a global pandemic by the World Health Organization (WHO) on 11 March 2020. A great number of studies in the search of new therapies and vaccines have been carried out in these three long years, producing a series of successes; however, the need for more effective vaccines, therapies and other solutions is still being pursued. This review represents a tracking shot of the current pharmacological therapies used for the treatment of COVID-19.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2 , Pandemics/prevention & control , China
8.
Molecules ; 27(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35163878

ABSTRACT

Multidrug resistance is a leading concern in public health. It describes a complex phenotype whose predominant feature is resistance to a wide range of structurally unrelated cytotoxic compounds, many of which are anticancer agents. Multidrug resistance may be also related to antimicrobial drugs, and is known to be one of the most serious global public health threats of this century. Indeed, this phenomenon has increased both mortality and morbidity as a consequence of treatment failures and its incidence in healthcare costs. The large amounts of antibiotics used in human therapies, as well as for farm animals and even for fishes in aquaculture, resulted in the selection of pathogenic bacteria resistant to multiple drugs. It is not negligible that the ongoing COVID-19 pandemic may further contribute to antimicrobial resistance. In this paper, multidrug resistance and antimicrobial resistance are underlined, focusing on the therapeutic options to overcome these obstacles in drug treatments. Lastly, some recent studies on nanodrug delivery systems have been reviewed since they may represent a significant approach for overcoming resistance.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , Animals , Drug Resistance, Microbial , Humans , Nanoparticle Drug Delivery System
9.
Int J Mol Sci ; 22(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067547

ABSTRACT

Resveratrol (RSV) is a natural compound that displays several pharmacological properties, including anti-cancer actions. However, its clinical application is limited because of its low solubility and bioavailability. Here, the antiproliferative and anti-inflammatory activity of a series of phenylacetamide RSV derivatives has been evaluated in several cancer cell lines. These derivatives contain a monosubstituted aromatic ring that could mimic the RSV phenolic nucleus and a longer flexible chain that could confer a better stability and bioavailability than RSV. Using MTT assay, we demonstrated that most derivatives exerted antiproliferative effects in almost all of the cancer cell lines tested. Among them, derivative 2, that showed greater bioavailability than RSV, was the most active, particularly against estrogen receptor positive (ER+) MCF7 and estrogen receptor negative (ER-) MDA-MB231 breast cancer cell lines. Moreover, we demonstrated that these derivatives, particularly derivative 2, were able to inhibit NO and ROS synthesis and PGE2 secretion in lipopolysaccharide (LPS)-activated U937 human monocytic cells (derived from a histiocytoma). In order to define the molecular mechanisms underlying the antiproliferative effects of derivative 2, we found that it determined cell cycle arrest at the G1 phase, modified the expression of cell cycle regulatory proteins, and ultimately triggered apoptotic cell death in both breast cancer cell lines. Taken together, these results highlight the studied RSV derivatives, particularly derivative 2, as promising tools for the development of new and more bioavailable derivatives useful in the treatment of breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Resveratrol/pharmacology , Apoptosis/drug effects , Biological Availability , Breast/pathology , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , G1 Phase/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Resveratrol/analogs & derivatives
10.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068616

ABSTRACT

In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.


Subject(s)
Carbanilides/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Biotransformation/drug effects , Carbanilides/chemistry , Carbanilides/toxicity , Ecotoxicology , Humans , Triclosan/chemistry , Triclosan/toxicity
11.
Bioorg Med Chem Lett ; 30(3): 126905, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31874823

ABSTRACT

Cancer is a complex issue and, even though the prevention basics and therapy have been implemented, it is still the second leading death cause worldwide. With the hope to discover new powerful and safer molecules to fight cancer, many researchers focused their attention on metal-based compounds, starting from the most famous and successfully employed anticancer drug, i.e. cisplatin. The current article aims to report the most recent discoveries about the use of gold, silver and copper complexes as antitumor agents, highlighting their influences on important enzymes, namely human topoisomerases. The latter are fundamental for the cell life and, if overexpressed, strongly implicated in cancer onset and progression. The identification of lead complexes targeting human topoisomerases and gifted with the appropriate chemical and pharmacological properties represents a fecund starting point to obtain new and more effective anticancer molecules.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , DNA Topoisomerases/chemistry , Gold/chemistry , Silver/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , DNA Topoisomerases/metabolism , Humans , Ligands , Structure-Activity Relationship
12.
Bioorg Chem ; 105: 104440, 2020 12.
Article in English | MEDLINE | ID: mdl-33217633

ABSTRACT

The indole scaffold has been recognized, over the years, as a model for the synthesis of compounds with anticancer activity by dint of its substantiated ability to act via multiple mechanisms, which also involves the inhibition of enzymes engaged in DNA replication. In this regard, a new series of indole and pyranoindole derivatives have been prepared, some of which showed good antitumor activity and proved their inhibitory effects on the tubulin target. The anticancer activity of the newly synthesized compounds has been evaluated on breast cancer cell lines, as MCF-7 and MDA-MB231, cervical cancer cells line HeLa and Ishikawa endometrial cancer cell line. Among the compounds under study, 7 exhibited a good antitumor activity on HeLa cell line (IC50 = 3.6 ± 0.5), leading to cell death by apoptosis due to the inhibition of tubulin polymerization, which demonstrated that the compound can explicate its function in a similar way to Vinblastine, a well-known inhibitor of tubulin polymerization. The data were also confirmed by in silico assays. No cytotoxicity against normal cells has been detected. Furthermore, in order to investigate the antioxidant properties, DPPH and ABTS tests were performed, together with fluorescence assays on 3T3-L1 cells. All our findings taken together led us to consider compound 7 a favourable candidate for the battle against cancer.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antioxidants/chemical synthesis , Indoles/chemical synthesis , Tubulin Modulators/chemical synthesis , Tubulin/metabolism , 3T3 Cells , Animals , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Hydrogen Peroxide/metabolism , Indoles/pharmacology , Mice , Molecular Docking Simulation , Molecular Structure , Reactive Oxygen Species/metabolism , Tubulin Modulators/pharmacology
13.
Int J Mol Sci ; 21(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096835

ABSTRACT

Breast cancer represents the most frequently diagnosed malignancy in women worldwide. Various therapeutics are currently used in order to halt the progression of breast tumor, even though certain side effects may limit the beneficial effects. In recent years, many efforts have been addressed to the usefulness of natural compounds as anticancer agents due to their low toxicity. Resveratrol, a stilbene found in grapes, berries, peanuts and soybeans, has raised a notable interest for its antioxidant, anti-inflammatory, and antitumor properties. Here, we report the design, the synthesis and the characterization of the anticancer activity of a small series of imino N-aryl-substituted compounds that are analogues of resveratrol. In particular, the most active compound, named 3, exhibited anti-tumor activity in diverse types of breast cancer cells through the inhibition of the human topoisomerase II and the induction of apoptotic cell death. Therefore, the abovementioned compound maybe considered as a promising agent in more comprehensive treatments of breast cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Resveratrol/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/chemistry , Female , HEK293 Cells , Humans , Imines/chemistry , Molecular Docking Simulation , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Poly-ADP-Ribose Binding Proteins/chemistry , Resveratrol/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology
14.
Int J Mol Sci ; 21(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050117

ABSTRACT

A mismatch between ß-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.


Subject(s)
Drosophila melanogaster/drug effects , Huntington Disease/drug therapy , Huntington Disease/metabolism , Longevity/drug effects , Methylhydrazines/pharmacology , Solute Carrier Family 22 Member 5/antagonists & inhibitors , Solute Carrier Family 22 Member 5/metabolism , Animals , Carnitine/metabolism , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Drosophila melanogaster/genetics , Drug Evaluation, Preclinical/methods , Humans , Mice , Molecular Docking Simulation , Protein Aggregation, Pathological/drug therapy , Signal Transduction/drug effects , Solute Carrier Family 22 Member 5/genetics , Transfection , Treatment Outcome
15.
Int J Mol Sci ; 20(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893846

ABSTRACT

Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.


Subject(s)
Resveratrol/administration & dosage , Resveratrol/pharmacology , Administration, Oral , Animals , Biological Availability , Halogens/chemistry , Humans , Liposomes , Resveratrol/chemistry , Resveratrol/pharmacokinetics
17.
Biometals ; 31(5): 715-735, 2018 10.
Article in English | MEDLINE | ID: mdl-30014355

ABSTRACT

Many evidences indicate that oxidative stress plays a significant role in a variety of human disease states, including neurodegenerative diseases. Iron is an essential metal for almost all living organisms due to its involvement in a large number of iron-containing proteins and enzymes, though it could be also toxic. Actually, free iron excess generates oxidative stress, particularly in brain, where anti-oxidative defences are relatively low. Its accumulation in specific regions is associated with pathogenesis in a variety of neurodegenerative diseases (i.e., Parkinson's disease, Alzheimer's disease, Huntington's chorea, Amyotrophic Lateral Sclerosis and Neurodegeneration with Brain Iron Accumulation). Anyway, the extent of toxicity is dictated, in part, by the localization of the iron complex within the cell (cytosolic, lysosomal and mitochondrial), its biochemical form, i.e., ferritin or hemosiderin, as well as the ability of the cell to prevent the generation and propagation of free radical by the wide range of antioxidants and cytoprotective enzymes in the cell. Particularly, ferrous iron can act as a catalyst in the Fenton reaction that potentiates oxygen toxicity by generating a wide range of free radical species, including hydroxyl radicals (·OH). The observation that patients with neurodegenerative diseases show a dramatic increase in their brain iron content, correlated with the production of reactive oxigen species in these areas of the brain, conceivably suggests that disturbances in brain iron homeostasis may contribute to the pathogenesis of these disorders. The aim of this review is to describe the chemical features of iron in human beings and iron induced toxicity in neurodegenerative diseases. Furthermore, the attention is focused on metal chelating drugs therapeutic strategies.


Subject(s)
Iron/metabolism , Neurodegenerative Diseases/metabolism , Oxidative Stress , Animals , Humans , Iron/adverse effects , Iron Chelating Agents/adverse effects , Iron Chelating Agents/metabolism , Neurodegenerative Diseases/chemically induced , Oxidative Stress/drug effects
18.
J Enzyme Inhib Med Chem ; 33(1): 434-444, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29383954

ABSTRACT

Synthetic or natural carbazole derivatives constitute an interesting class of heterocycles, which showed several pharmaceutical properties and occupied a promising place as antitumour tools in preclinical studies. They target several cellular key-points, e.g. DNA and Topoisomerases I and II. The most studied representative, i.e. Ellipticine, was introduced in the treatment of metastatic breast cancer. However, because of the onset of dramatic side effects, its use was almost dismissed. Many efforts were made in order to design and synthesise new carbazole derivatives with good activity and reduced side effects. The major goal of the present study was to synthesise a series of new N-thioalkylcarbazole derivatives with anti-proliferative effects. Two compounds, 5a and 5c, possess an interesting anti-proliferative activity against breast and uterine cancer cell lines without affecting non-tumoural cell lines viability. The most active compound (5c) induces cancer cells death triggering the intrinsic apoptotic pathway by inhibition of Topoisomerase II.


Subject(s)
Antineoplastic Agents/pharmacology , Carbazoles/pharmacology , DNA Topoisomerases, Type II/metabolism , Sulfhydryl Compounds/pharmacology , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carbazoles/chemical synthesis , Carbazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry
19.
Molecules ; 23(2)2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29385738

ABSTRACT

BACKGROUND: Despite the progress achieved by anti-retroviral drug research in the last decades, the discovery of novel compounds endowed with selective antiviral activity and reduced side effects is still a necessity. At present, the most urgent requirement includes the improvement of HIV (Human Immunodeficiency Virus) prevention and sexual transmission and the development of new drugs to treat the chronic lifelong infection. METHODS: Six chloro-1,4-dimethyl-9H-carbazoles (2a,b-4a,b) have been prepared following opportunely modified known chemical procedures and tested in luciferase and Escherichia coli ß-galactosidase expressing CD4⁺, CXCR4⁺, CCR5⁺ TZM-bl cells. RESULTS AND CONCLUSION: a preliminary biological investigation on the synthesized small series of chloro-1,4-dimethyl-9H-carbazoles has been carried out. Among all tested compounds, a nitro-derivative (3b) showed the most interesting profile representing a suitable lead for the development of novel anti-HIV drugs.


Subject(s)
Anti-HIV Agents , Carbazoles , HIV Infections/prevention & control , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Carbazoles/chemical synthesis , Carbazoles/chemistry , Carbazoles/pharmacology , Cell Line , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/pathology , Humans
20.
Molecules ; 22(4)2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28398240

ABSTRACT

N-Palmitoyl-ethanolamine (PEA) is an anti-inflammatory component of egg yolk that is usually employed for the prevention of respiratory apparatus virus infection and then frequently used for its efficient anti-inflammatory and analgesic effects in experimental models of visceral, neuropathic, and inflammatory diseases. Nevertheless, data of its use in animal or human therapy are still scarce and further studies are needed. Herein, we report the biological evaluation of a small library of N-palmitoyl-ethanolamine analogues or derivatives, characterized by a protected acid function (either as palmitoyl amides or hexadecyl esters), useful to decrease their hydrolysis rate in vitro and prolong their biological activity. Two of these compounds-namely phenyl-carbamic acid hexadecyl ester (4) and 2-methyl-pentadecanoic acid (4-nitro-phenyl)-amide (5)-have shown good anti-inflammatory and antioxidant properties, without affecting the viability of J774A.1 macrophages. Finally, crystals suitable for X-ray analysis of compound 4 have been obtained, and its solved crystal structure is here reported. Our outcomes may be helpful for a rational drug design based on new PEA analogues/derivatives with improved biological properties.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Ethanolamines/chemistry , Ethanolamines/pharmacology , Models, Molecular , Palmitic Acids/chemistry , Palmitic Acids/pharmacology , Amides , Animals , Cell Line , Cell Survival/drug effects , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Molecular Structure , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL