Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Sensors (Basel) ; 20(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297345

ABSTRACT

Quality checks, assessments, and the assurance of food products, raw materials, and food ingredients is critically important to ensure the safeguard of foods of high quality for safety and public health. Nevertheless, quality checks, assessments, and the assurance of food products along distribution and supply chains is impacted by various challenges. For instance, the development of portable, sensitive, low-cost, and robust instrumentation that is capable of real-time, accurate, and sensitive analysis, quality checks, assessments, and the assurance of food products in the field and/or in the production line in a food manufacturing industry is a major technological and analytical challenge. Other significant challenges include analytical method development, method validation strategies, and the non-availability of reference materials and/or standards for emerging food contaminants. The simplicity, portability, non-invasive, non-destructive properties, and low-cost of NIR spectrometers, make them appealing and desirable instruments of choice for rapid quality checks, assessments and assurances of food products, raw materials, and ingredients. This review article surveys literature and examines current challenges and breakthroughs in quality checks and the assessment of a variety of food products, raw materials, and ingredients. Specifically, recent technological innovations and notable advances in quartz crystal microbalances (QCM), electroanalytical techniques, and near infrared (NIR) spectroscopic instrument development in the quality assessment of selected food products, and the analysis of food raw materials and ingredients for foodborne pathogen detection between January 2019 and July 2020 are highlighted. In addition, chemometric approaches and multivariate analyses of spectral data for NIR instrumental calibration and sample analyses for quality assessments and assurances of selected food products and electrochemical methods for foodborne pathogen detection are discussed. Moreover, this review provides insight into the future trajectory of innovative technological developments in QCM, electroanalytical techniques, NIR spectroscopy, and multivariate analyses relating to general applications for the quality assessment of food products.


Subject(s)
Quartz Crystal Microbalance Techniques , Spectroscopy, Near-Infrared , Calibration , Food-Processing Industry , Multivariate Analysis
2.
Molecules ; 26(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374724

ABSTRACT

In this study, three magnetic ionic liquids (MILs) were investigated for extraction of four estrogens, i.e., estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2), from environmental water. The cation trihexyl(tetradecyl)phosphonium ([P66614]+), selected to confer hydrophobicity to the resulting MIL, was combined with tetrachloroferrate(III), ferricyanide, and dysprosium thiocyanate to yield ([P66614][FeCl4]), ([P66614]3[Fe(CN)6]), and ([P66614]5[Dy(SCN)8]), respectively. After evaluation of various strategies to develop a liquid-liquid microextraction technique based on synthesized MILs, we placed the MILs onto a magnetic stir bar and used them as extracting solvents. After extraction, the MIL-enriched phase was dissolved in methanol and injected into an HPLC-UV for qualitative and quantitative analysis. An experimental design was used to simultaneously evaluate the effect of select variables and optimization of extraction conditions to maximize the recovery of the analytes. Under optimum conditions, limits of detection were in the range of 0.2 (for E3 and E2) and 0.5 µg L-1 (for E1), and calibration curves exhibited linearity in the range of 1-1000 µg L-1 with correlation coefficients higher than 0.998. The percent relative standard deviation (RSD) was below 5.0%. Finally, this method was used to determine concentration of estrogens in real lake and sewage water samples.


Subject(s)
Estradiol/analysis , Estradiol/isolation & purification , Ionic Liquids/chemistry , Liquid Phase Microextraction/methods , Magnetics , Sewage/analysis , Water Pollutants, Chemical/analysis , Estrogens/analysis , Estrogens/isolation & purification , Sewage/chemistry , Water Pollutants, Chemical/chemistry
3.
Mol Pharm ; 15(9): 3837-3845, 2018 09 04.
Article in English | MEDLINE | ID: mdl-29975540

ABSTRACT

Herein, we report on the role of endocytosis in the selective chemotherpeutic toxicity of rhodamine 6G (R6G) based nanomaterials, i.e., nanoGUMBOS, that are derived from a group of uniform materials based on organic salts (GUMBOS). Evaluation of cellular uptake in the presence and absence of endocytosis inhibitors suggests nanoGUMBOS internalization via clathrin-mediated endocytosis in cancer cells and reveals lack of endocytic internalization in normal cells. Results from characterization of these nanomaterials suggest that endocytic internalization in cancer cells leads to nanoGUMBOS dissociation within the endosomal environment. This ultimately results in selective cytotoxicity of the nanoGUMBOS for cancer cells with no toxicity toward normal cells under examined conditions. Following examination of the selectivity mechanism, in vivo investigations were performed to examine potential therapeutic properties of these nanoparticles. Remarkably, nanoGUMBOS treatment using a mouse xenograft model reduced the tumor volume by 50% suggesting retention of in vitro therapeutic properties in vivo. These results corroborate the selective behavior of nanoGUMBOS and demonstrate their in vivo therapeutic effects, providing further insight into the possible use of these nanomaterials as potential chemotherapeutic agents.


Subject(s)
Endocytosis/drug effects , Nanostructures/toxicity , Rhodamines/toxicity , Animals , Breast Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Female , Flow Cytometry , Humans , Mice, Nude , Nanostructures/chemistry , Rhodamines/chemistry
4.
J Chem Phys ; 147(14): 144701, 2017 Oct 14.
Article in English | MEDLINE | ID: mdl-29031258

ABSTRACT

The synthesis, characterization, ultrafast dynamics, and nonlinear spectroscopy of 30 nm nanospheres of brilliant green-bis(pentafluoroethylsulfonyl)imide ([BG][BETI]) in water are reported. These thermally stable nanoparticles are derived from a group of uniform materials based on organic salts (nanoGUMBOS) that exhibit enhanced near-infrared emission compared with the molecular dye in water. The examination of ultrafast transient absorption spectroscopy results reveals that the overall excited-state relaxation lifetimes of [BG][BETI] nanoGUMBOS are longer than the brilliant green molecular dye in water due to steric hindrance of the torsional degrees of freedom of the phenyl rings around the central carbon. Furthermore, the second harmonic generation signal of [BG][BETI] nanoGUMBOS is enhanced by approximately 7 times and 23 times as compared with colloidal gold nanoparticles of the same size and the brilliant green molecular dye in water, respectively. A very clear third harmonic generation signal is observed from the [BG][BETI] nanoGUMBOS but not from either the molecular dye or the gold nanoparticles. Overall, these results show that [BG][BETI] nanoGUMBOS exhibit altered ultrafast and nonlinear spectroscopy that is beneficial for various applications including nonlinear imaging probes, biomedical imaging, and molecular sensing.

5.
Anal Chem ; 87(10): 5156-66, 2015.
Article in English | MEDLINE | ID: mdl-25913394

ABSTRACT

Herein, we demonstrate an alternative strategy for creating QCM-based sensor arrays by use of a single sensor to provide multiple responses per analyte. The sensor, which simulates a virtual sensor array (VSA), was developed by depositing a thin film of ionic liquid, either 1-octyl-3-methylimidazolium bromide ([OMIm][Br]) or 1-octyl-3-methylimidazolium thiocyanate ([OMIm][SCN]), onto the surface of a QCM-D transducer. The sensor was exposed to 18 different organic vapors (alcohols, hydrocarbons, chlorohydrocarbons, nitriles) belonging to the same or different homologous series. The resulting frequency shifts (Δf) were measured at multiple harmonics and evaluated using principal component analysis (PCA) and discriminant analysis (DA) which revealed that analytes can be classified with extremely high accuracy. In almost all cases, the accuracy for identification of a member of the same class, that is, intraclass discrimination, was 100% as determined by use of quadratic discriminant analysis (QDA). Impressively, some VSAs allowed classification of all 18 analytes tested with nearly 100% accuracy. Such results underscore the importance of utilizing lesser exploited properties that influence signal transduction. Overall, these results demonstrate excellent potential of the virtual sensor array strategy for detection and discrimination of vapor phase analytes utilizing the QCM. To the best of our knowledge, this is the first report on QCM VSAs, as well as an experimental sensor array, that is based primarily on viscoelasticity, film thickness, and harmonics.


Subject(s)
Elasticity , Quartz Crystal Microbalance Techniques/instrumentation , Discriminant Analysis , Equipment Design , Gases/analysis , Gases/chemistry , Principal Component Analysis , Viscosity , Volatilization
6.
Anal Chem ; 87(8): 4464-71, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25822878

ABSTRACT

There is a continuing need to develop high-performance sensors for monitoring organic solvents, primarily due to the environmental impact of such compounds. In this regard, colorimetric sensors have been a subject of intense research for such applications. Herein, we report a unique virtual colorimetric sensor array based on a single ionic liquid (IL) for accurate detection and identification of similar organic solvents and mixtures of such solvents. In this study, we employ eight alcohols and seven binary mixtures of ethanol and methanol as analytes to provide a stringent test for assessing the capabilities of this array. The UV-visible spectra of alcoholic solutions of the IL used in this study show two absorption bands. Interestingly, the ratio of absorbance for these two bands is found to be extremely sensitive to alcohol polarity. A virtual sensor array is created by using four different concentrations of IL sensor, which allowed identification of these analytes with 96.4-100% accuracy. Overall, this virtual sensor array is found to be very promising for discrimination of closely related organic solvents.

7.
Chemistry ; 21(41): 14440-6, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26288164

ABSTRACT

A novel approach for tuning spectral properties, as well as minimizing aggregation, in zinc porphyrin and zinc phthalocyanine-based compounds is presented. Particular emphasis is placed on use of these compounds as photosensitizers in photodynamic therapy (PDT). To accomplish this aim, a bulky hydrophobic cation, trihexyltetradecylphosphonium, is paired with anionic porphyrin and phthalocyanine dyes to produce a group of uniform materials based on organic salts (GUMBOS) that absorb at longer wavelengths with high molar absorptivity and high photostability. Nanoparticles derived from these GUMBOS possess positively charged surfaces with high zeta potential values, which are highly desirable for PDT. Upon irradiation at longer wavelengths, these GUMBOS produced singlet oxygen with greater efficiency as compared to the respective parent dyes.

8.
J Phys Chem A ; 119(20): 4780-6, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25901534

ABSTRACT

We report on the synthesis and characterization of multifunctional ionic liquid crystals (melting points below 100 °C) which possess chirality and fluorescent behavior as well as mesomorphic and magnetic properties. In this regard, (1R,2S)-(-)-N-methylephedrine ((-)MeEph), containing a chiral center, is linked with variable alkyl chain lengths (e.g., 14, 16, and 18 carbons) to yield liquid crystalline properties in the cations of these compounds. A complex counteranion consisting of trivalent dysprosium (Dy(3+)) and thiocyanate ligand (SCN(-)) is employed, where Dy(3+) provides fluorescent and magnetic properties. Examination of differential scanning calorimetry (DSC) and hot-stage polarizing optical microscopy (POM) data confirmed liquid crystalline characteristics in these materials. We further report on phase transitions from solid to liquid crystal states, followed by isotropic liquid states with increasing temperature. These compounds exhibited two characteristic emission peaks in acetonitrile solution and the solid state when excited at λex = 366 nm, which are attributed to transitions from (4)F9/2 to (6)H15/2 and (4)F9/2 to (6)H13/2. The emission intensities of these compounds were found to be very sensitive to the phase.

9.
Anal Chem ; 86(15): 7184-91, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25017178

ABSTRACT

Ionic liquid (IL) chemistry has evolved over the past century, such that these organic salts have impacted virtually every area of science and engineering. In the area of chemistry, initial applications of these salts were primarily the domain of chemists or chemical engineers who desired to manipulate the properties of IL solvents for a variety of applications including tuning various chemical processes. Since then, the chemistry of these organic salts has progressed such that changing an important property of a solvent (e.g., melting point or hydrophobicity) often involves simply altering the counterion of the organic salt. It is with this simplicity in mind that we have recently embarked upon the use of such chemistry to manipulate important properties of solid-phase ionic organic materials. To differentiate this chemistry from ionic liquid chemistry, we have coined the acronym GUMBOS (group of uniform materials based on organic salts). In this perspective article, we describe and demonstrate how ionic liquid chemistry can provide distinct and sometimes unique chemistry for solid-phase applications. Solid phase properties which can be manipulated via this chemistry include, but are not limited to, magnetism, melting point, hydrophobicity, fluorescence quantum yields, nanoformulations, material aggregation, viscosity, viscoelasticity, and cytotoxicity. In addition, we discuss a few examples to demonstrate how GUMBOS chemistry, until now, has been beneficial to the general area of materials chemistry and, more broadly, to the field of analytical chemistry. We also project future applications of this technology.

10.
Electrophoresis ; 35(17): 2463-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24798689

ABSTRACT

A rapid liquid phase extraction employing a novel hydrophobic surfactant-based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4 P][AOT]), coupled with capillary electrophoretic-UV (CE-UV) detection is developed for removal and determination of phenolic compounds. The long-carbon-chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional-surfactant-anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1-80.0 µg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4-5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047-0.257 µg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples.


Subject(s)
Electrophoresis, Capillary/methods , Ionic Liquids/chemistry , Phenols/analysis , Phenols/isolation & purification , Surface-Active Agents/chemistry , Hydrogen-Ion Concentration , Limit of Detection , Linear Models , Osmolar Concentration , Phenols/chemistry , Reproducibility of Results , Sodium Chloride
11.
Rapid Commun Mass Spectrom ; 28(21): 2307-14, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25279744

ABSTRACT

RATIONALE: Detection of hydrophobic peptides remains a major obstacle for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). This stems from the fact that most matrices for MALDI are hydrophilic and therefore have low affinities for hydrophobic peptides. Herein, 1-aminopyrene (AP) and AP-derived group of uniform materials based on organic salts (GUMBOS) as novel matrices for MALDI-MS analyses of peptides were investigated for hydrophobic and hydrophilic peptides. METHODS: A number of solid-phase AP-based GUMBOS are synthesized with variable hydrophobicity simply by changing the counterions. Structures were confirmed by use of (1)H NMR and electrospray ionization mass spectrometry (ESI-MS). 1-Octanol/water partition coefficients (Ko/w) were used to measure the hydrophobicity of the matrices. A dried-droplet method was used for sample preparation. All spectra were obtained using a MALDI-TOF mass spectrometer in positive ion reflectron mode. RESULTS: A series of AP-based GUMBOS was synthesized including [AP][chloride] ([AP][Cl]), [AP][ascorbate] ([AP][Asc]) and [AP][bis(trifluoromethane)sulfonimide] ([AP][NTf2]). The relative hydrophobicities of these compounds and α-cyano-4-hydroxycinnamic acid (CHCA, a common MALDI matrix) indicated that AP-based GUMBOS can be tuned to be much more hydrophobic than CHCA. A clear trend is observed between the signal intensities of hydrophobic peptides and hydrophobicity of the matrix. CONCLUSIONS: MALDI matrices of GUMBOS with tunable hydrophobicities are easily obtained simply by varying the counterion. We have found that hydrophobic matrix materials are very effective for MALDI determination of hydrophobic peptides and, similarly, the more hydrophilic peptides displayed greater intensity in the more hydrophilic matrix.


Subject(s)
Pyrenes/chemistry , Salts/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Peptides/analysis , Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
12.
ACS Appl Bio Mater ; 7(8): 5359-5368, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39102354

ABSTRACT

We have studied the endocytic mechanisms that determine subcellular localization for three carrier-free chemotherapeutic-photothermal (chemo-PTT) combination ionic nanomedicines (INMs) composed of doxorubicin (DOX) and an near-infrared (NIR) dye (ICG, IR820, or IR783). This study aims to understand the cellular basis for previously published enhanced toxicity results of these combination nanomedicines toward MCF-7 breast cancer cells. The active transport mechanism of INMs, unlike free DOX, which is known to employ passive transport, was validated by conducting temperature-dependent cellular uptake of the drug in MCF-7 cells using confocal microscopy. The internalization pathway of these INMs was further probed in the presence and absence of different endocytosis inhibitors. Detailed examination of the mode of entry of the carrier-free INMs in MCF-7 cells revealed that they are primarily internalized through clathrin-mediated endocytosis. In addition, time-dependent subcellular localization studies were also investigated. Examination of time-dependent confocal images indicated that the INMs targeted multiple organelles, in contrast to free DOX that primarily targets the nucleus. Collectively, the high cellular endocytic uptake in cancerous cells (EPR effect) and the multimode targeting ability demonstrated the main reason for the low half-maxima inhibitory concentration (IC50) value (the high cytotoxicity) of these carrier-free INMs as compared to their respective parent chemo and PTT drugs.


Subject(s)
Doxorubicin , Endocytosis , Nanomedicine , Doxorubicin/pharmacology , Doxorubicin/chemistry , Humans , Endocytosis/drug effects , MCF-7 Cells , Particle Size , Organelles/metabolism , Organelles/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Ions/chemistry
13.
ACS Appl Nano Mater ; 7(2): 2176-2189, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38410412

ABSTRACT

Synergistic combination therapy approach offers lots of options for delivery of materials with anticancer properties, which is a very promising strategy to treat a variety of malignant lesions with enhanced therapeutic efficacy. The current study involves a detailed investigation of combination ionic nanomedicines where a chemotherapeutic drug is coupled with a photothermal agent to attain dual mechanisms (chemotherapy (chemo) and photothermal therapy (PTT)) to improve the drug's efficacy. An FDA-approved Doxorubicin hydrochloride (DOX·HCl) is electrostatically attached with a near-infrared cyanine dye (ICG, IR783, and IR820), which serves as a PTT drug using ionic liquid chemistry to develop three ionic material (IM)-based chemo-PTT drugs. Carrier-free ionic nanomedicines (INMs) are derived from ionic materials (IMs). The photophysical properties of the developed combination IMs and their INMs were studied in depth. The phototherapeutic efficiency of the combination drugs was evaluated by measuring the photothermal conversion efficiency and singlet-oxygen quantum yield. The improved photophysical properties of the combination nanomedicines in comparison to their parent compounds significantly enhanced INMs' photothermal efficiency. Cellular uptake, dark and light toxicity studies, and cell death mechanisms of the chemo-PTT nanoparticles were also studied in vitro. The combination INMs exhibited enhanced cytotoxicity compared to their respective parent compounds. Moreover, the apoptosis cell death mechanism was almost doubled for combination nanomedicine than the free DOX, which is attributed to enhanced cellular uptake. Examination of the combination index and improved in vitro cytotoxicity results revealed a great synergy between chemo and PTT drugs in the developed combination nanomedicines.

14.
Article in English | MEDLINE | ID: mdl-38173822

ABSTRACT

FÓ§rster resonance energy transfer (FRET)-based systems are widely applicable in many areas of interest. In this study, a novel FRET-based ionic material (IM) was synthesized by pairing carbazole imidazolium cation (CI+) with fluorescein anion (Fl2-) through a simple ion-exchange method. The resulting IM ([CI]2[Fl]) was converted into an ionic nanoparticle (INP) in aqueous media for practical use for bioimaging application. The photophysical properties of the parent dyes, [CI]2[Fl], and INP were studied in detail. All FRET parameters were calculated in the synthesized material. [CI]2[Fl] exhibited a significant spectral overlap integral and an ideal theoretical FRET distance. The presence of the FRET mechanism was verified by the observed decrease in donor fluorescence lifetime and a moderate FRET efficiency in [CI]2[Fl]. The INP formed from [CI]2[Fl] was evaluated for use as a fluorescent pH probe and bioimaging agent. FRET efficiency of INP is calculated in a series of pH studies which indicates the highest efficiency at physiological pH. Whereas no FRET phenomenon is observed in highly acidic and basic conditions. The pH-dependent photophysical properties of [CI]2[Fl] are monitored and allow for the potential application as a fluorescent probe for the detection of acidic tissues in biological systems. The FRET-capable INP showed superior bioimaging capability in vitro as compared to the parent dye.

15.
J Biochem Technol ; 14(3): 50-58, 2023.
Article in English | MEDLINE | ID: mdl-38179150

ABSTRACT

In this study, the application of ionic materials as a combination antibiotic drug was investigated. The fluoroquinolone, Norfloxacin, was converted into the ionic form and combined with the cationic dye, IR780+, using an ion-exchange reaction. The resulting ionic combination drug possesses two killing mechanisms in one compound. The antibiotic chemical mechanism along with the photothermal mechanism that was acquired by adding IR780 to the compound led to the development of a combination antibiotic drug. This ionic combination drug consisting of Norfloxacin anion and IR780 cation is easily dispersed in water using sonication waves. The parent compounds and ionic combination drug, dissolved in organic solvent and dispersed in water, were characterized, and the photophysical properties were studied in detail. It was discovered that the aqueous ionic combination drugs exhibited significant changes in absorbance and photoluminescent properties. In aqueous media, the dispersed ionic combination drug exhibited a very broad absorbance with an additional peak around 1000 nm which is advantageous in photothermal. A significant decrease in the quantum yield along with enhanced non-radiative rate constant was observed for the combination drug in the aqueous. The photothermal mechanism is present in both the parent IR780 dye and the ionic combination drug. The ionic combination drug displayed a high light-to-heat conversion efficiency and temperature increase similar to the parent dye. The combination of both killing mechanisms in the ionic combination drug resulted in enhanced antibacterial activity against Escherichia coli as compared to the parent Norfloxacin and IR780-I individually.

16.
ACS Appl Bio Mater ; 6(12): 5662-5675, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38063308

ABSTRACT

This study presents the synthesis and characterization of monosubstituted cationic porphyrin as a photodynamic therapeutic agent. Cationic porphyrin was converted into ionic materials by using a single-step ion exchange reaction. The small iodide counteranion was replaced with bulky BETI and IR783 anions to reduce aggregation and enhance the photodynamic effect of porphyrin. Carrier-free ionic nanomedicines were then prepared by using the reprecipitation method. The photophysical characterization of parent porphyrin, ionic materials, and ionic nanomaterials, including absorbance, fluorescence and phosphorescence emission, quantum yield, radiative and nonradiative rate, and lifetimes, was performed. The results revealed that the counteranion significantly affects the photophysical properties of porphyrin. The ionic nanomaterials exhibited an increase in the reactive oxygen yield and enhanced cytotoxicity toward the MCF-7 cancer cell line. Examination of results revealed that the ionic materials exhibited an enhanced photodynamic therapeutic activity with a low IC50 value (nanomolar) in cancerous cells. These nanomedicines were mainly localized in the mitochondria. The improved light cytotoxicity is attributed to the enhanced photophysical properties and positive surface charge of the ionic nanomedicines that facilitate efficient cellular uptake. These results demonstrate that ionic material-based nanodrugs are promising photosensitizers for photodynamic therapy.


Subject(s)
Photochemotherapy , Porphyrins , Humans , Porphyrins/pharmacology , Nanomedicine , Photosensitizing Agents/pharmacology , Cations
17.
J Mater Chem B ; 10(5): 806-816, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35043823

ABSTRACT

Combination nanodrugs are promising therapeutic agents for cancer treatment. However, they often require the use of complex nanovehicles for transportation into the tumor site. Herein, a new class of carrier-free ionic nanomaterials (INMs) is presented, which are self-assembled by the drug molecules themselves. In this regard, a photothermal therapy (PTT) mechanism is combined with a chemotherapy (chemo) mechanism using ionic liquid chemistry to develop a combination drug to deliver multiple cytotoxic mechanisms simultaneously. Nanodrugs were developed from an ionic material-based chemo-PTT combination drug by using a simple reprecipitation method. Detailed examination of the photophysical properties (absorption, fluorescence emission, quantum yield, radiative and non-radiative rate) of the INMs revealed significant spectral changes which are directly related to their therapeutic effect. The reactive oxygen species quantum yield and the light to heat conversion efficiency of the photothermal agents were shown to be enhanced in combination nanomedicines as compared to their respective parent compounds. The ionic nanodrugs exhibited an improved dark and light cytotoxicity in vitro as compared to either the chemotherapeutic or photothermal parent compounds individually, due to a synergistic effect of the combined therapies, improved photophysical properties and their nanoparticles' morphology that enhanced the cellular uptake of the drugs. This study presents a general framework for the development of carrier-free dual-mechanism nanotherapeutics.


Subject(s)
Nanoparticles , Phototherapy , Combined Modality Therapy , Drug Delivery Systems/methods , Heating , Ions , Nanoparticles/chemistry , Phototherapy/methods
19.
Environ Technol ; 42(26): 4115-4124, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32194006

ABSTRACT

Herein, a facile synthesis of heteroatom doped biochar is reported. The material is characterized and analyzed in detail for its application as a low-cost adsorbent for removal of a toxic dye pollutant, Methylene Blue (MB), from aqueous solution. Synthesized material showed enhanced surface area compared to parent biochar (458 to802 m2g-1) The adsorbent's performance is investigated using batch adsorption methods with experiments conducted at varying conditions of adsorbent dosage, initial dye concentration (50-500 mg/L), and pH (3-11). Adsorption of MB onto two different adsorbents such as biochar (BC) and doped BC, is fitted using Langmuir and Freundlich isotherms with the experimental data correlating most accurately with Langmuir modelling, indicating chemisorption mechanism of dye onto adsorbent. Maximum monolayer equilibrium adsorption from Langmuir equation is found to be 129.8 and 357.1 mg/g for pure BC and Phosphorus and Nitrogen co-doped BC (PNBC), respectively. Pseudo-first and -second order kinetic models are applied to investigate the adsorption mechanism of PNBC. Adsorption mechanism followed pseudo-second order model well, with correlation coefficients very close to 1. The results indicate that microwave-assisted heteroatom co-doped BC showed superior performance as adsorbent for the adsorption of MB dye from aqueous solution.


Subject(s)
Carbon , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Methylene Blue , Microwaves
20.
J Nanosci Nanotechnol ; 21(12): 6143-6150, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34229815

ABSTRACT

Ionic liquids are an interesting class of materials that have recently been utilized as chemotherapeutic agents in cancer therapy. Aniline blue, a commonly used biological staining agent, was used as a counter ion to trihexyltetradecylphosphonium, a known cytotoxic cation. A facile, single step ion exchange reaction was performed to synthesize a fluorescent ionic liquid, trihexyltetradecylphosphonium aniline blue. Aqueous nanoparticles of this hydrophobic ionic liquid were prepared using reprecipitationmethod. The newly synthesized ionic liquid and subsequent nanoparticles were characterized using various spectroscopic techniques. Transmission electron microscopy and zeta potential measurements were performed to characterize the nanoparticles' morphology and surface charge. The photophysical properties of the nanoparticles and the parent aniline blue compound were studied using absorption and fluorescence spectroscopy. Cell viability studies were conducted to investigate the cytotoxicity of the newly developed trihexyltetradecylphosphonium aniline blue nanoparticles in human breast epithelial cancer cell line (MCF-7) and its corresponding normal epithelial cell line (MCF-10A) in vitro. The results revealed that the synthesized ionic nanomedicines were more cytotoxic (lower IC50) than the parent chemotherapeutic compound in MCF-7 cells. Nanoparticles of the synthesized ionic liquid were also shown to be more stable in both aqueous and cellular media and more selective than parent compounds towards cancer cells.


Subject(s)
Antineoplastic Agents , Ionic Liquids , Nanoparticles , Aniline Compounds , Antineoplastic Agents/toxicity , Humans , Hydrophobic and Hydrophilic Interactions , Ionic Liquids/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL