Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(4): 761-777, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38503299

ABSTRACT

Ion channels mediate voltage fluxes or action potentials that are central to the functioning of excitable cells such as neurons. The KCNB family of voltage-gated potassium channels (Kv) consists of two members (KCNB1 and KCNB2) encoded by KCNB1 and KCNB2, respectively. These channels are major contributors to delayed rectifier potassium currents arising from the neuronal soma which modulate overall excitability of neurons. In this study, we identified several mono-allelic pathogenic missense variants in KCNB2, in individuals with a neurodevelopmental syndrome with epilepsy and autism in some individuals. Recurrent dysmorphisms included a broad forehead, synophrys, and digital anomalies. Additionally, we selected three variants where genetic transmission has not been assessed, from two epilepsy studies, for inclusion in our experiments. We characterized channel properties of these variants by expressing them in oocytes of Xenopus laevis and conducting cut-open oocyte voltage clamp electrophysiology. Our datasets indicate no significant change in absolute conductance and conductance-voltage relationships of most disease variants as compared to wild type (WT), when expressed either alone or co-expressed with WT-KCNB2. However, variants c.1141A>G (p.Thr381Ala) and c.641C>T (p.Thr214Met) show complete abrogation of currents when expressed alone with the former exhibiting a left shift in activation midpoint when expressed alone or with WT-KCNB2. The variants we studied, nevertheless, show collective features of increased inactivation shifted to hyperpolarized potentials. We suggest that the effects of the variants on channel inactivation result in hyper-excitability of neurons, which contributes to disease manifestations.


Subject(s)
Epilepsy , Mutation, Missense , Neurodevelopmental Disorders , Shab Potassium Channels , Animals , Humans , Action Potentials , Epilepsy/genetics , Neurons , Oocytes , Xenopus laevis , Shab Potassium Channels/genetics , Shab Potassium Channels/metabolism , Neurodevelopmental Disorders/genetics
2.
Hum Mol Genet ; 32(10): 1753-1763, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36715146

ABSTRACT

Pathogenic variations in the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene are responsible for multiple epilepsy phenotypes, including Dravet syndrome, febrile seizures (FS) and genetic epilepsy with FS plus. Phenotypic heterogeneity is a hallmark of SCN1A-related epilepsies, the causes of which are yet to be clarified. Genetic variation in the non-coding regulatory regions of SCN1A could be one potential causal factor. However, a comprehensive understanding of the SCN1A regulatory landscape is currently lacking. Here, we summarized the current state of knowledge of SCN1A regulation, providing details on its promoter and enhancer regions. We then integrated currently available data on SCN1A promoters by extracting information related to the SCN1A locus from genome-wide repositories and clearly defined the promoter and enhancer regions of SCN1A. Further, we explored the cellular specificity of differential SCN1A promoter usage. We also reviewed and integrated the available human brain-derived enhancer databases and mouse-derived data to provide a comprehensive computationally developed summary of SCN1A brain-active enhancers. By querying genome-wide data repositories, extracting SCN1A-specific data and integrating the different types of independent evidence, we created a comprehensive catalogue that better defines the regulatory landscape of SCN1A, which could be used to explore the role of SCN1A regulatory regions in disease.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Seizures, Febrile , Humans , Mice , Animals , NAV1.1 Voltage-Gated Sodium Channel/genetics , Epilepsies, Myoclonic/genetics , Epilepsy/genetics , Promoter Regions, Genetic , Phenotype , Seizures, Febrile/genetics , Mutation
3.
Hum Mol Genet ; 32(4): 580-594, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36067010

ABSTRACT

DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.


Subject(s)
Epilepsies, Partial , Epileptic Syndromes , Megalencephaly , Polymicrogyria , Humans , Mutation , GTPase-Activating Proteins/genetics , TOR Serine-Threonine Kinases/genetics , Epilepsies, Partial/genetics , Megalencephaly/genetics
4.
Am J Hum Genet ; 109(11): 2080-2087, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36288729

ABSTRACT

Genetic epilepsy with febrile seizures plus (GEFS+) is an autosomal dominant familial epilepsy syndrome characterized by distinctive phenotypic heterogeneity within families. The SCN1B c.363C>G (p.Cys121Trp) variant has been identified in independent, multi-generational families with GEFS+. Although the variant is present in population databases (at very low frequency), there is strong clinical, genetic, and functional evidence to support pathogenicity. Recurrent variants may be due to a founder event in which the variant has been inherited from a common ancestor. Here, we report evidence of a single founder event giving rise to the SCN1B c.363C>G variant in 14 independent families with epilepsy. A common haplotype was observed in all families, and the age of the most recent common ancestor was estimated to be approximately 800 years ago. Analysis of UK Biobank whole-exome-sequencing data identified 74 individuals with the same variant. All individuals carried haplotypes matching the epilepsy-affected families, suggesting all instances of the variant derive from a single mutational event. This unusual finding of a variant causing an autosomal dominant, early-onset disease in an outbred population that has persisted over many generations can be attributed to the relatively mild phenotype in most carriers and incomplete penetrance. Founder events are well established in autosomal recessive and late-onset disorders but are rarely observed in early-onset, autosomal dominant diseases. These findings suggest variants present in the population at low frequencies should be considered potentially pathogenic in mild phenotypes with incomplete penetrance and may be more important contributors to the genetic landscape than previously thought.


Subject(s)
Epilepsy , Seizures, Febrile , Child , Humans , Pedigree , Electroencephalography , Seizures, Febrile/genetics , Phenotype , Epilepsy/genetics
5.
Genet Med ; 26(2): 101023, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947183

ABSTRACT

PURPOSE: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. METHODS: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. RESULTS: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. CONCLUSION: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.


Subject(s)
Neurodevelopmental Disorders , Reinfection , Humans , Leukocytes, Mononuclear , Syndrome , Phenotype , Arrhythmias, Cardiac/genetics , Neurodevelopmental Disorders/genetics , Cell Adhesion Molecules/genetics , Extracellular Matrix Proteins/genetics
6.
Epilepsia ; 65(1): 95-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37945547

ABSTRACT

OBJECTIVE: Concern about climate change among the general public is acknowledged by surveys. The health care sector must play its part in reducing greenhouse gas emissions and adapting to a changing climate, which will require the support of its stakeholders including those with epilepsy, who may be especially vulnerable. It is important to understand this community's attitudes and concerns about climate change and societal responses. METHODS: A survey was made available to more than 100 000 people among a section of the neurological community (patients, carers, and clinicians), focused on epilepsy. We applied quantitative analysis of Likert scale responses supported by qualitative analyses of free-text questions with crossover analyses to identify consonance and dissonance between the two approaches. RESULTS: A small proportion of potential respondents completed the survey; of 126 respondents, 52 had epilepsy and 56 explicitly declared no illness. The survey indicated concern about the impact of climate change on health within this neurological community focused on epilepsy. More than half of respondents considered climate change to have been bad for their health, rising to 68% in a subgroup with a neurological condition; over 80% expected climate change to harm their health in future. Most (>75%) believed that action to reduce greenhouse gas emissions will lead to improved health and well-being. The crossover analysis identified cost and accessibility as significant barriers. SIGNIFICANCE: The high level of concern about climate change impacts and positive attitudes toward policies to reduce greenhouse gas emissions provide support for climate action from the epilepsy community. However, if policies are implemented without considering the needs of patients, they risk being exclusionary, worsening inequalities, and further threatening neurological health and well-being.


Subject(s)
Epilepsy , Greenhouse Gases , Humans , Climate Change , Caregivers , Health Personnel , Epilepsy/epidemiology
7.
Epilepsia ; 65(3): 779-791, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38088023

ABSTRACT

OBJECTIVE: Epilepsy with eyelid myoclonia (EEM) spectrum is a generalized form of epilepsy characterized by eyelid myoclonia with or without absences, eye closure-induced seizures with electroencephalographic paroxysms, and photosensitivity. Based on the specific clinical features, age at onset, and familial occurrence, a genetic cause has been postulated. Pathogenic variants in CHD2, SYNGAP1, NEXMIF, RORB, and GABRA1 have been reported in individuals with photosensitivity and eyelid myoclonia, but whether other genes are also involved, or a single gene is uniquely linked with EEM, or its subtypes, is not yet known. We aimed to dissect the genetic etiology of EEM. METHODS: We studied a cohort of 105 individuals by using whole exome sequencing. Individuals were divided into two groups: EEM- (isolated EEM) and EEM+ (EEM accompanied by intellectual disability [ID] or any other neurodevelopmental/psychiatric disorder). RESULTS: We identified nine variants classified as pathogenic/likely pathogenic in the entire cohort (8.57%); among these, eight (five in CHD2, one in NEXMIF, one in SYNGAP1, and one in TRIM8) were found in the EEM+ subcohort (28.57%). Only one variant (IFIH1) was found in the EEM- subcohort (1.29%); however, because the phenotype of the proband did not fit with published data, additional evidence is needed before considering IFIH1 variants and EEM- an established association. Burden analysis did not identify any single burdened gene or gene set. SIGNIFICANCE: Our results suggest that for EEM, as for many other epilepsies, the identification of a genetic cause is more likely with comorbid ID and/or other neurodevelopmental disorders. Pathogenic variants were mostly found in CHD2, and the association of CHD2 with EEM+ can now be considered a reasonable gene-disease association. We provide further evidence to strengthen the association of EEM+ with NEXMIF and SYNGAP1. Possible new associations between EEM+ and TRIM8, and EEM- and IFIH1, are also reported. Although we provide robust evidence for gene variants associated with EEM+, the core genetic etiology of EEM- remains to be elucidated.


Subject(s)
Epilepsy, Generalized , Epilepsy, Reflex , Myoclonus , Humans , Exome Sequencing , Interferon-Induced Helicase, IFIH1/genetics , Epilepsy, Reflex/genetics , Electroencephalography , Eyelids , Carrier Proteins/genetics , Nerve Tissue Proteins/genetics
8.
Brain ; 146(9): 3885-3897, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37006128

ABSTRACT

Dravet syndrome is an archetypal rare severe epilepsy, considered 'monogenic', typically caused by loss-of-function SCN1A variants. Despite a recognizable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. The polygenic risk score for intelligence was lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Humans , NAV1.1 Voltage-Gated Sodium Channel/genetics , Epilepsies, Myoclonic/genetics , Epilepsy/genetics , Phenotype , Genomics
9.
Brain ; 146(8): 3404-3415, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36852571

ABSTRACT

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.


Subject(s)
Focal Cortical Dysplasia , Malformations of Cortical Development , Humans , Reproducibility of Results , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Brain/pathology , Magnetic Resonance Imaging/methods
10.
Pract Neurol ; 24(1): 28-36, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-37949657

ABSTRACT

'We are called to be architects of the future, not its victims'-Buckminster Fuller People with chronic neurological conditions may be vulnerable to change and less able to manage its demands: neurological diseases are among the most burdensome. Whether climate change has particular effects on specific neurological diseases or not, the known impaired resilience to change affecting people with neurological diseases requires neurologists to have awareness of potential climate impacts and their management. Preparedness should include understanding of general national and local alerts and action systems, and the ability to advise patients about managing extreme weather events, particularly heatwaves, but also floods and cold snaps. At the same time, we need more research into the particular consequences of climate change on specific neurological diseases. Climate change is a serious healthcare issue, requiring the neurological community to respond as it would, or did, to other serious challenges, such as COVID-19. As disease experts, we all have a role to play.


Subject(s)
Climate Change , Weather , Humans , Neurologists , Floods , Brain
11.
Genet Med ; 25(11): 100922, 2023 11.
Article in English | MEDLINE | ID: mdl-37403762

ABSTRACT

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Subject(s)
Autism Spectrum Disorder , Epilepsy , Animals , Humans , Rats , Autism Spectrum Disorder/genetics , Epilepsy/genetics , Mutation, Missense/genetics , N-Methylaspartate/metabolism , Neurons/metabolism , Rabphilin-3A
12.
Ann Neurol ; 91(1): 101-116, 2022 01.
Article in English | MEDLINE | ID: mdl-34693554

ABSTRACT

OBJECTIVE: Germline loss-of-function mutations in DEPDC5, and in its binding partners (NPRL2/3) of the mammalian target of rapamycin (mTOR) repressor GATOR1 complex, cause focal epilepsies and increase the risk of sudden unexpected death in epilepsy (SUDEP). Here, we asked whether DEPDC5 haploinsufficiency predisposes to primary cardiac defects that could contribute to SUDEP and therefore impact the clinical management of patients at high risk of SUDEP. METHODS: Clinical cardiac investigations were performed in 16 patients with pathogenic variants in DEPDC5, NPRL2, or NPRL3. Two novel Depdc5 mouse strains, a human HA-tagged Depdc5 strain and a Depdc5 heterozygous knockout with a neuron-specific deletion of the second allele (Depdc5c/- ), were generated to investigate the role of Depdc5 in SUDEP and cardiac activity during seizures. RESULTS: Holter, echocardiographic, and electrocardiographic (ECG) examinations provided no evidence for altered clinical cardiac function in the patient cohort, of whom 3 DEPDC5 patients succumbed to SUDEP and 6 had a family history of SUDEP. There was no cardiac injury at autopsy in a postmortem DEPDC5 SUDEP case. The HA-tagged Depdc5 mouse revealed expression of Depdc5 in the brain, heart, and lungs. Simultaneous electroencephalographic-ECG records on Depdc5c/- mice showed that spontaneous epileptic seizures resulting in a SUDEP-like event are not preceded by cardiac arrhythmia. INTERPRETATION: Mouse and human data show neither structural nor functional cardiac damage that might underlie a primary contribution to SUDEP in the spectrum of DEPDC5-related epilepsies. ANN NEUROL 2022;91:101-116.


Subject(s)
Epilepsies, Partial/complications , GTPase-Activating Proteins/genetics , Heart , Sudden Unexpected Death in Epilepsy/etiology , Adolescent , Adult , Animals , Electrocardiography , Electroencephalography , Epilepsies, Partial/genetics , Female , Humans , Male , Mice , Middle Aged , Mutation , Tumor Suppressor Proteins/genetics , Young Adult
13.
J Neurol Neurosurg Psychiatry ; 94(11): 887-892, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37364985

ABSTRACT

BACKGROUND: Whole genome sequencing is increasingly used in healthcare, particularly for diagnostics. However, its clinically multifaceted potential for individually customised diagnostic and therapeutic care remains largely unexploited. We used existing whole genome sequencing data to screen for pharmacogenomic risk factors related to antiseizure medication-induced cutaneous adverse drug reactions (cADRs), such as human leucocyte antigen HLA-B*15:02, HLA-A*31:01 variants. METHODS: Genotyping results, generated from the Genomics England UK 100 000 Genomes Project primarily for identification of disease-causing variants, were used to additionally screen for relevant HLA variants and other pharmacogenomic variants. Medical records were retrospectively reviewed for clinical and cADR phenotypes for HLA variant carriers. Descriptive statistics and the χ2 test were used to analyse phenotype/genotype data for HLA carriers and compare frequencies of additional pharmacogenomic variants between HLA carriers with and without cADRs, respectively. RESULTS: 1043 people with epilepsy were included. Four HLA-B*15:02 and 86 HLA-A*31:01 carriers were identified. One out of the four identified HLA-B*15:02 carriers had suffered antiseizure medication-induced cADRs; the point prevalence of cADRs was 16.9% for HLA-A*31:01 carriers of European origin (n=46) and 14.4% for HLA-A*31:01 carriers irrespective of ancestry (n=83). CONCLUSIONS: Comprehensive utilisation of genetic data spreads beyond the search for causal variants alone and can be extended to additional clinical benefits such as identifying pharmacogenomic biomarkers, which can guide pharmacotherapy for genetically-susceptible individuals.

14.
Epilepsia ; 64(5): e82-e86, 2023 05.
Article in English | MEDLINE | ID: mdl-36799507

ABSTRACT

Focal and generalized epilepsies are associated with robust differences in magnetic resonance imaging (MRI) measures of subcortical structures, gray matter, and white matter. However, it is unknown whether such structural brain differences reflect the cause or consequence of epilepsy or its treatment. Analyses of common genetic variants underlying both common epilepsy risk and variability in structural brain measures can give further insights, as such inherited variants are not influenced by disease or treatment. Here, we performed genetic correlation analyses using data from the largest genome-wide association study (GWAS) on common epilepsy (n = 27 559 cases and 42 436 controls) and GWASs on MRI measures of white (n = 33 292) or gray matter (n = 51 665). We did not detect any significant genetic correlation between any type of common epilepsy and any of 280 measures of gray matter, white matter, or subcortical structures. These results suggest that there are distinct genetic bases underlying risk of common epilepsy and for structural brain measures. This would imply that the genetic basis of normal structural brain variation is unrelated to that of common epilepsy. Structural changes in epilepsy could rather be the consequence of epilepsy, its comorbidities, or its treatment, offering a cumulative record of disease.


Subject(s)
Epilepsy, Generalized , Epilepsy , White Matter , Humans , Genome-Wide Association Study , Epilepsy/diagnostic imaging , Epilepsy/genetics , Epilepsy/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , Epilepsy, Generalized/diagnostic imaging , Epilepsy, Generalized/genetics , Epilepsy, Generalized/pathology , White Matter/diagnostic imaging , White Matter/pathology
15.
Epilepsia ; 64(1): 208-217, 2023 01.
Article in English | MEDLINE | ID: mdl-36398398

ABSTRACT

OBJECTIVE: Progressive myoclonic epilepsy type 1 (EPM1) is caused by biallelic alterations in the CSTB gene, most commonly dodecamer repeat expansions. Although transcranial magnetic stimulation (TMS)-induced long-interval intracortical inhibition (LICI) was previously reported to be normal in EPM1, short-interval intracortical inhibition (SICI) was reduced. We explored the association between these measures and the clinical and genetic features in a separate group of patients with EPM1. METHODS: TMS combined with electromyography was performed under neuronavigation. LICI was induced with an inter-stimulus interval (ISI) of 100 ms, and SICI with ISIs of 2 and 3 ms, and their means (mSICIs) were expressed as the ratio of conditioned to unconditioned stimuli. LICI and mSICI were compared between patients and controls. Nonparametric correlation was used to study the association between inhibition and parameters of clinical severity, including the Unified Myoclonus Rating Scale (UMRS); among patients with EPM1 due to biallelic expansion repeats, also the association with the number of repeats was assessed. RESULTS: The study protocol was completed in 19 patients (15 with biallelic expansion repeats and 4 compound heterozygotes), and 7 healthy, age- and sex-matched control participants. Compared to controls, patients demonstrated significantly less SICI (median mSICI ratio 1.18 vs 0.38; p < .001). Neither LICI nor SICI was associated with parameters of clinical severity. In participants with biallelic repeat expansions, the number of repeats in the more affected allele (greater repeat number [GRN]) correlated with LICI (rho = 0.872; p < .001) and SICI (rho = 0.689; p = .006). SIGNIFICANCE: Our results strengthen the finding of deranged γ-aminobutyric acid (GABA)ergic inhibition in EPM1. LICI and SICI may have use as markers of GABAergic impairment in future trials of disease-modifying treatment in this condition. Whether a higher number of expansion repeats leads to greater GABAergic impairment warrants further study.


Subject(s)
Motor Cortex , Neural Inhibition , Humans , Neural Inhibition/genetics , Electromyography , Genotype , Transcranial Magnetic Stimulation/methods , Motor Cortex/physiology , Evoked Potentials, Motor/physiology
16.
Epilepsia ; 64(6): e105-e111, 2023 06.
Article in English | MEDLINE | ID: mdl-37021337

ABSTRACT

Although a striking female preponderance has been consistently reported in epilepsy with eyelid myoclonia (EEM), no study has specifically explored the variability of clinical presentation according to sex in this syndrome. Here, we aimed to investigate sex-specific electroclinical differences and prognostic determinants in EEM. Data from 267 EEM patients were retrospectively analyzed by the EEM Study Group, and a dedicated multivariable logistic regression analysis was developed separately for each sex. We found that females with EEM showed a significantly higher rate of persistence of photosensitivity and eye closure sensitivity at the last visit, along with a higher prevalence of migraine with/without aura, whereas males with EEM presented a higher rate of borderline intellectual functioning/intellectual disability. In female patients, multivariable logistic regression analysis revealed age at epilepsy onset, eyelid myoclonia status epilepticus, psychiatric comorbidities, and catamenial seizures as significant predictors of drug resistance. In male patients, a history of febrile seizures was the only predictor of drug resistance. Hence, our study reveals sex-specific differences in terms of both electroclinical features and prognostic factors. Our findings support the importance of a sex-based personalized approach in epilepsy care and research, especially in genetic generalized epilepsies.


Subject(s)
Epilepsy, Absence , Epilepsy, Generalized , Epilepsy , Intellectual Disability , Myoclonus , Humans , Male , Female , Retrospective Studies , Prognosis , Electroencephalography , Epilepsy/complications , Epilepsy/epidemiology , Myoclonus/epidemiology , Eyelids
17.
J Med Genet ; 59(12): 1151-1164, 2022 12.
Article in English | MEDLINE | ID: mdl-35764379

ABSTRACT

BACKGROUND: The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS: We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS: We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION: Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.


Subject(s)
Bardet-Biedl Syndrome , Ciliopathies , Humans , Antigens, Neoplasm , Bardet-Biedl Syndrome/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Ciliopathies/diagnosis , Ciliopathies/genetics , Cytoskeletal Proteins/genetics , Genotype , Microtubule-Associated Proteins/genetics , Phenotype , State Medicine , Genome, Human
18.
Pharmacol Rev ; 72(3): 606-638, 2020 07.
Article in English | MEDLINE | ID: mdl-32540959

ABSTRACT

Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs ("precision medicine") for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal. SIGNIFICANCE STATEMENT: Drug resistance provides a major challenge in epilepsy management. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of drug resistance in epilepsy and discuss how the problem might be overcome.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy/drug therapy , Animals , Anticonvulsants/pharmacokinetics , Anticonvulsants/therapeutic use , Drug Resistance , Epilepsy/genetics , Epilepsy/metabolism , Humans , Randomized Controlled Trials as Topic
19.
Hum Brain Mapp ; 43(18): 5465-5477, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35866186

ABSTRACT

Transcranial magnetic stimulation (TMS)-evoked EEG potentials (TEPs) have been used to study the excitability of different cortical areas (CAs) in humans. Characterising the interhemispheric symmetry of TMS-EEG may provide further understanding of structure-function association in physiological and pathological conditions. We hypothesise that, in keeping with the underlying cytoarchitectonics, TEPs in contralateral homologous CAs share similar, symmetric spectral features, whilst ipsilateral TEPs from different CAs diverge in their waveshape and frequency content. We performed single-pulse (<1 Hz) navigated monophasic TMS, combined with high-density EEG with active electrodes, in 10 healthy participants. We targeted two bilateral CAs: premotor and motor. We compared frequency power bands, computed Pearson correlation coefficient (R) and Correlated Component Analysis (CorrCA) to detect divergences, as well as common components across TEPs. The main frequency of TEPs was faster in premotor than in motor CAs (p < .05) across all participants. Frequencies were not different between contralateral homologous CAs, whilst, despite closer proximity, there was a significant difference between ipsilateral premotor and motor CAs (p > .5), with frequency decreasing from anterior to posterior CAs. Correlation was high between contralateral homologous CAs and low between ipsilateral CAs. When applying CorrCA, specific components were shared by contralateral homologous TEPs. We show physiological symmetry of TEP spectral features between contralateral homologous CAs, whilst ipsilateral premotor and motor TEPs differ despite lower geometrical distance. Our findings support the role of TEPs as biomarker of local cortical properties and provide a first reference dataset for TMS-EEG studies in asymmetric brain disorders.


Subject(s)
Motor Cortex , Transcranial Magnetic Stimulation , Humans , Electroencephalography , Motor Cortex/physiology , Evoked Potentials/physiology , Healthy Volunteers , Evoked Potentials, Motor/physiology
20.
Neuropathol Appl Neurobiol ; 48(3): e12775, 2022 04.
Article in English | MEDLINE | ID: mdl-34820881

ABSTRACT

Non-coding DNA (ncDNA) refers to the portion of the genome that does not code for proteins and accounts for the greatest physical proportion of the human genome. ncDNA includes sequences that are transcribed into RNA molecules, such as ribosomal RNAs (rRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and un-transcribed sequences that have regulatory functions, including gene promoters and enhancers. Variation in non-coding regions of the genome have an established role in human disease, with growing evidence from many areas, including several cancers, Parkinson's disease and autism. Here, we review the features and functions of the regulatory elements that are present in the non-coding genome and the role that these regions have in human disease. We then review the existing research in epilepsy and emphasise the potential value of further exploring non-coding regulatory elements in epilepsy. In addition, we outline the most widely used techniques for recognising regulatory elements throughout the genome, current methodologies for investigating variation and the main challenges associated with research in the field of non-coding DNA.


Subject(s)
Epilepsy , MicroRNAs , RNA, Long Noncoding , Epilepsy/genetics , Genome , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL