Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38610312

ABSTRACT

Electrocardiogram (ECG) reconstruction from contact photoplethysmogram (PPG) would be transformative for cardiac monitoring. We investigated the fundamental and practical feasibility of such reconstruction by first replicating pioneering work in the field, with the aim of assessing the methods and evaluation metrics used. We then expanded existing research by investigating different cycle segmentation methods and different evaluation scenarios to robustly verify both fundamental feasibility, as well as practical potential. We found that reconstruction using the discrete cosine transform (DCT) and a linear ridge regression model shows good results when PPG and ECG cycles are semantically aligned-the ECG R peak and PPG systolic peak are aligned-before training the model. Such reconstruction can be useful from a morphological perspective, but loses important physiological information (precise R peak location) due to cycle alignment. We also found better performance when personalization was used in training, while a general model in a leave-one-subject-out evaluation performed poorly, showing that a general mapping between PPG and ECG is difficult to derive. While such reconstruction is valuable, as the ECG contains more fine-grained information about the cardiac activity as well as offers a different modality (electrical signal) compared to the PPG (optical signal), our findings show that the usefulness of such reconstruction depends on the application, with a trade-off between morphological quality of QRS complexes and precise temporal placement of the R peak. Finally, we highlight future directions that may resolve existing problems and allow for reliable and robust cross-modal physiological monitoring using just PPG.


Subject(s)
Electrocardiography , Photoplethysmography , Feasibility Studies , Benchmarking , Electricity
2.
Sensors (Basel) ; 21(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800716

ABSTRACT

Contact-free sensors offer important advantages compared to traditional wearables. Radio-frequency sensors (e.g., radars) offer the means to monitor cardiorespiratory activity of people without compromising their privacy, however, only limited information can be obtained via movement, traditionally related to heart or breathing rate. We investigated whether five complex hemodynamics scenarios (resting, apnea simulation, Valsalva maneuver, tilt up and tilt down on a tilt table) can be classified directly from publicly available contact and radar input signals in an end-to-end deep learning approach. A series of robust k-fold cross-validation evaluation experiments were conducted in which neural network architectures and hyperparameters were optimized, and different data input modalities (contact, radar and fusion) and data types (time and frequency domain) were investigated. We achieved reasonably high accuracies of 88% for contact, 83% for radar and 88% for fusion of modalities. These results are valuable in showing large potential of radar sensing even for more complex scenarios going beyond just heart and breathing rate. Such contact-free sensing can be valuable for fast privacy-preserving hospital screenings and for cases where traditional werables are impossible to use.

3.
Sensors (Basel) ; 19(15)2019 Aug 04.
Article in English | MEDLINE | ID: mdl-31382703

ABSTRACT

Blood pressure (BP) is a direct indicator of hypertension, a dangerous and potentially deadly condition. Regular monitoring of BP is thus important, but many people have aversion towards cuff-based devices, and their limitation is that they can only be used at rest. Using just a photoplethysmogram (PPG) to estimate BP is a potential solution investigated in our study. We analyzed the MIMIC III database for high-quality PPG and arterial BP waveforms, resulting in over 700 h of signals after preprocessing, belonging to 510 subjects. We then used the PPG alongside its first and second derivative as inputs into a novel spectro-temporal deep neural network with residual connections. We have shown in a leave-one-subject-out experiment that the network is able to model the dependency between PPG and BP, achieving mean absolute errors of 9.43 for systolic and 6.88 for diastolic BP. Additionally we have shown that personalization of models is important and substantially improves the results, while deriving a good general predictive model is difficult. We have made crucial parts of our study, especially the list of used subjects and our neural network code, publicly available, in an effort to provide a solid baseline and simplify potential comparison between future studies on an explicit MIMIC III subset.


Subject(s)
Blood Pressure/physiology , Photoplethysmography/methods , Deep Learning , Humans , Neural Networks, Computer , Signal Processing, Computer-Assisted
4.
Biomed Opt Express ; 15(5): 3128-3146, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38855660

ABSTRACT

Single-site multi-wavelength (MW) pulse transit time (PTT) measurement was recently proposed using contact sensors with sequential illumination. It leverages different penetration depths of light to measure the traversal of a cardiac pulse between skin layers. This enabled continuous single-site MW blood pressure (BP) monitoring, but faces challenges like subtle skin compression, which importantly influences the PPG morphology and subsequent PTT. We extended this idea to contact-free camera-based sensing and identified the major challenge of color channel overlap, which causes the signals obtained from a consumer RGB camera to be a mixture of responses in different wavelengths, thus not allowing for meaningful PTT measurement. To address this, we propose novel camera-independent data-driven channel separation algorithms based on constrained genetic algorithms. We systematically validated the algorithms on camera recordings of palms and corresponding ground-truth BP measurements of 13 subjects in two different scenarios, rest and activity. We compared the proposed algorithms against established blind source separation methods and against previous camera-specific physics-based method, showing good performance in both PTT reconstruction and BP estimation using a Random Forest regressor. The best-performing algorithm achieved mean absolute errors (MAEs) of 3.48 and 2.61 mmHg for systolic and diastolic BP in a leave-one-subject-out experiment with personalization, solidifying the proposed algorithms as enablers of novel contact-free MW PTT and BP estimation.

5.
Int J Dev Disabil ; 70(5): 887-903, 2024.
Article in English | MEDLINE | ID: mdl-39131753

ABSTRACT

Introduction: The preferences of people with profound intellectual and multiple disabilities (PIMD) often remain unfulfilled since it stays challenging to decode their idiosyncratic behavior resulting in a negative impact on their quality of life (QoL). Physiological data (i.e. heart rate (variability) and motion data) might be the missing piece for identifying emotions of people with PIMD, which positively affects their QoL. Method: Machine learning (ML) processes and statistical analyses are integrated to discern and predict the potential relationship between physiological data and emotional states (i.e. numerical emotional states, descriptive emotional states and emotional arousal) in everyday interactions and activities of two participants with PIMD. Results: Emotional profiles were created enabling a differentiation of the individual emotional behavior. Using ML classifiers and statistical analyses, the results regarding the phases partially confirm previous research, and the findings for the descriptive emotional states were good and even better for the emotional arousal. Conclusion: The results show the potential of the emotional profiles especially for practitioners and the possibility to get a better insight into the emotional experience of people with PIMD including physiological data. This seems to be the missing piece to better recognize emotions of people with PIMD with a positive impact on their QoL.

6.
Article in English | MEDLINE | ID: mdl-34201618

ABSTRACT

The COVID-19 pandemic affected the whole world, but not all countries were impacted equally. This opens the question of what factors can explain the initial faster spread in some countries compared to others. Many such factors are overshadowed by the effect of the countermeasures, so we studied the early phases of the infection when countermeasures had not yet taken place. We collected the most diverse dataset of potentially relevant factors and infection metrics to date for this task. Using it, we show the importance of different factors and factor categories as determined by both statistical methods and machine learning (ML) feature selection (FS) approaches. Factors related to culture (e.g., individualism, openness), development, and travel proved the most important. A more thorough factor analysis was then made using a novel rule discovery algorithm. We also show how interconnected these factors are and caution against relying on ML analysis in isolation. Importantly, we explore potential pitfalls found in the methodology of similar work and demonstrate their impact on COVID-19 data analysis. Our best models using the decision tree classifier can predict the infection class with roughly 80% accuracy.


Subject(s)
COVID-19 , Algorithms , Humans , Machine Learning , Pandemics , SARS-CoV-2
7.
JMIR Med Inform ; 9(3): e24501, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33666562

ABSTRACT

BACKGROUND: Congestive heart failure (CHF) is a disease that requires complex management involving multiple medications, exercise, and lifestyle changes. It mainly affects older patients with depression and anxiety, who commonly find management difficult. Existing mobile apps supporting the self-management of CHF have limited features and are inadequately validated. OBJECTIVE: The HeartMan project aims to develop a personal health system that would comprehensively address CHF self-management by using sensing devices and artificial intelligence methods. This paper presents the design of the system and reports on the accuracy of its patient-monitoring methods, overall effectiveness, and patient perceptions. METHODS: A mobile app was developed as the core of the HeartMan system, and the app was connected to a custom wristband and cloud services. The system features machine learning methods for patient monitoring: continuous blood pressure (BP) estimation, physical activity monitoring, and psychological profile recognition. These methods feed a decision support system that provides recommendations on physical health and psychological support. The system was designed using a human-centered methodology involving the patients throughout development. It was evaluated in a proof-of-concept trial with 56 patients. RESULTS: Fairly high accuracy of the patient-monitoring methods was observed. The mean absolute error of BP estimation was 9.0 mm Hg for systolic BP and 7.0 mm Hg for diastolic BP. The accuracy of psychological profile detection was 88.6%. The F-measure for physical activity recognition was 71%. The proof-of-concept clinical trial in 56 patients showed that the HeartMan system significantly improved self-care behavior (P=.02), whereas depression and anxiety rates were significantly reduced (P<.001), as were perceived sexual problems (P=.01). According to the Unified Theory of Acceptance and Use of Technology questionnaire, a positive attitude toward HeartMan was seen among end users, resulting in increased awareness, self-monitoring, and empowerment. CONCLUSIONS: The HeartMan project combined a range of advanced technologies with human-centered design to develop a complex system that was shown to help patients with CHF. More psychological than physical benefits were observed. TRIAL REGISTRATION: ClinicalTrials.gov NCT03497871; https://clinicaltrials.gov/ct2/history/NCT03497871. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1186/s12872-018-0921-2.

SELECTION OF CITATIONS
SEARCH DETAIL