Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Perception ; 53(5-6): 397-400, 2024 May.
Article in English | MEDLINE | ID: mdl-38409958

ABSTRACT

To read this article, you have to constantly direct your gaze at the words on the page. If you go for a run instead, your gaze will be less constrained, so many factors could influence where you look. We show that you are likely to spend less time looking at the path just in front of you when running alone than when running with someone else, presumably because the presence of the other runner makes foot placement more critical.


Subject(s)
Running , Humans , Running/physiology , Adult , Male , Female , Young Adult , Fixation, Ocular/physiology
2.
J Aging Phys Act ; : 1-10, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019442

ABSTRACT

We investigated whether dosed failure motivates older adults to perform more repetitions in an exergame that involves hitting targets with stepping movements. The effect of dosed failure was studied in a within-participants design in which all participants performed this exergame in both a Standard condition, in which one never fails, and in a Dosed Failure condition, in which we introduced about 30% failures. The order of conditions (Standard First or Dosed Failure first) was chosen randomly for each participant. Results showed that participants performed more repetitions in the Dosed Failure condition compared with the Standard condition, while play duration and subjective motivation at the moment of quitting did not differ. This shows that dosed failure motivated older adults to put a greater amount of effort to perform the exercise without affecting play duration or subjective motivation.

3.
Exp Brain Res ; 241(8): 2001-2008, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37386195

ABSTRACT

People generally look at a target when they want to reach for it. Doing so presumably helps them continuously update their judgments about the target's position and motion. But not looking at their hand does not prevent people from updating judgments about its position on the basis of visual information, because people do respond to experimental perturbations of visual information about the position of their hand. Here, we study such responses by adding jitter to the movement of a cursor that follows participants' fingers. We analyse the response to the jitter in a way that reveals how the vigour of the response depends on the moment during the movement at which the change in cursor position occurs. We compare the change in vigour to that for equivalent jitter in the position of the target. We find that participants respond to jitter in the position of a cursor in much the same way as they respond to jitter in the target's position. The responses are more vigorous late in the movement, when adjustments need to be made within less time, but similarly so for the cursor as for the target. The responses are weaker for the cursor, presumably because of the jitter-free kinaesthetic information about the position of the finger.


Subject(s)
Motion Perception , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Hand/physiology , Motion Perception/physiology , Movement/physiology , Fingers
4.
Exp Brain Res ; 241(1): 105-111, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36370156

ABSTRACT

The size of an object equals the distance between the positions of its opposite edges. However, human sensory processing for perceiving positions differs from that for perceiving size. Which of these two information sources is used to control grip aperture? In this paper, we answer this question by prism adaptation of single-digit movements of the index finger and thumb. We previously showed that it is possible to adapt the index finger and thumb in opposite directions and that this adaptation induces an aftereffect in grip aperture in grasping. This finding suggests that grasping is based on the perceived positions of the contact points. However, it might be compatible with grasping being controlled based on size provided that the opposing prism adaptation leads to changes in visually perceived size or proprioception of hand opening. In that case, one would predict a similar aftereffect in manually indicating the perceived size. In contrast, if grasping is controlled based on information about the positions of the edges, the aftereffect in grasping is due to altered position information, so one would predict no aftereffect in manually indicating the perceived size. Our present experiment shows that there was no aftereffect in manually indicating perceived size. We conclude that grip aperture during grasping is based on perceived positions rather than on perceived size.


Subject(s)
Fingers , Hand , Humans , Adaptation, Physiological , Hand Strength , Movement , Psychomotor Performance
5.
Exp Brain Res ; 241(1): 81-104, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36371477

ABSTRACT

Reaching movements are guided by estimates of the target object's location. Since the precision of instantaneous estimates is limited, one might accumulate visual information over time. However, if the object is not stationary, accumulating information can bias the estimate. How do people deal with this trade-off between improving precision and reducing the bias? To find out, we asked participants to tap on targets. The targets were stationary or moving, with jitter added to their positions. By analysing the response to the jitter, we show that people continuously use the latest available information about the target's position. When the target is moving, they combine this instantaneous target position with an extrapolation based on the target's average velocity during the last several hundred milliseconds. This strategy leads to a bias if the target's velocity changes systematically. Having people tap on accelerating targets showed that the bias that results from ignoring systematic changes in velocity is removed by compensating for endpoint errors if such errors are consistent across trials. We conclude that combining simple continuous updating of visual information with the low-pass filter characteristics of muscles, and adjusting movements to compensate for errors made in previous trials, leads to the precise and accurate human goal-directed movements.


Subject(s)
Motion Perception , Psychomotor Performance , Humans , Psychomotor Performance/physiology , Motion Perception/physiology , Uncertainty , Motion , Movement/physiology
6.
Exp Brain Res ; 241(7): 1811-1820, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37244877

ABSTRACT

People rely upon sensory information in the environment to guide their actions. Ongoing goal-directed arm movements are constantly adjusted to the latest estimate of both the target and hand's positions. Does the continuous guidance of ongoing arm movements also consider the latest visual information of the position of obstacles in the surrounding? To find out, we asked participants to slide their finger across a screen to intercept a laterally moving virtual target while moving through a gap that was created by two virtual circular obstacles. At a fixed time during each trial, the target suddenly jumped slightly laterally while still continuing to move. In half the trials, the size of the gap changed at the same moment as the target jumped. As expected, participants adjusted their movements in response to the target jump. Importantly, the magnitude of this response depended on the new size of the gap. If participants were told that the circles were irrelevant, changing the gap between them had no effect on the responses. This shows that obstacles' instantaneous positions can be considered when visually guiding goal-directed movements.


Subject(s)
Hand , Psychomotor Performance , Humans , Fingers , Hand/physiology , Movement/physiology , Psychomotor Performance/physiology
7.
Exp Brain Res ; 241(5): 1447-1457, 2023 May.
Article in English | MEDLINE | ID: mdl-37067561

ABSTRACT

Visual feedback normally helps guide movements to their goal. When moving one's hand, such guidance has to deal with a sensorimotor delay of about 100 ms. When moving a cursor, it also has to deal with a delay of tens of milliseconds that arises between the hand moving the mouse and the cursor moving on the screen. Moreover, the cursor is presented at a certain rate, so only positions corresponding with the position of the mouse at certain moments are presented. How does the additional delay and the rate at which cursor positions are updated influence how well the cursor can be guided to the goal? We asked participants to move a cursor to consecutive targets as quickly as they could. They did so for various additional delays and presentation rates. It took longer for the mouse to reach the target when the additional delay was longer. It also took longer when a lower presentation rate was achieved by not presenting the cursor all the time. The fraction of the time during which the cursor was present was more important than the rate at which the cursor's position was updated. We conclude that the way human arm movements are guided benefits from continuous access to recent visual feedback.


Subject(s)
Arm , Feedback, Sensory , Humans , Animals , Mice , Goals , Movement , Reaction Time , Psychomotor Performance , Visual Perception
8.
Exp Brain Res ; 241(9): 2287-2298, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37580611

ABSTRACT

Binary feedback, providing information solely about task success or failure, can be sufficient to drive motor learning. While binary feedback can induce explicit adjustments in movement strategy, it remains unclear if this type of feedback also induces implicit learning. We examined this question in a center-out reaching task by gradually moving an invisible reward zone away from a visual target to a final rotation of 7.5° or 25° in a between-group design. Participants received binary feedback, indicating if the movement intersected the reward zone. By the end of the training, both groups modified their reach angle by about 95% of the rotation. We quantified implicit learning by measuring performance in a subsequent no-feedback aftereffect phase, in which participants were told to forgo any adopted movement strategies and reach directly to the visual target. The results showed a small, but robust (2-3°) aftereffect in both groups, highlighting that binary feedback elicits implicit learning. Notably, for both groups, reaches to two flanking generalization targets were biased in the same direction as the aftereffect. This pattern is at odds with the hypothesis that implicit learning is a form of use-dependent learning. Rather, the results suggest that binary feedback can be sufficient to recalibrate a sensorimotor map.


Subject(s)
Learning , Psychomotor Performance , Humans , Generalization, Psychological , Movement , Reward , Feedback, Sensory , Adaptation, Physiological
9.
J Vis ; 23(12): 7, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37871013

ABSTRACT

Objects in one's environment do not always move at a constant velocity but often accelerate or decelerate. People are very poor at visually judging acceleration and normally make systematic errors when trying to intercept accelerating objects. If the acceleration is perpendicular to the direction of motion, it gives rise to a curved path. Can spatial contextual cues help one predict such accelerations and thereby help interception? To answer this question, we asked participants to hit a target that moved as if it were attached to a rolling disk, like a valve (target) on a bicycle wheel (disk) moves when cycling: constantly accelerating toward the wheel's center. On half the trials, the disk was visible such that participants could use the spatial relations between the target and the rolling disk to guide their interception. On the other half, the disk was not visible, so participants had no help in predicting the target's complicated pattern of accelerations and decelerations. Importantly, the target's path was the same in both cases. Participants hit more targets when the disk was visible than when it was invisible, even when using a strategy that can compensate for neglecting acceleration. We conclude that spatial contextual cues that help predict the target's accelerations can help intercept it.


Subject(s)
Motion Perception , Psychomotor Performance , Humans , Cues , Motion , Acceleration
10.
Exp Brain Res ; 240(6): 1849-1871, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35551429

ABSTRACT

Throughout the day, people constantly make choices such as where to direct their gaze or place their foot. When making such movement choices, there are usually multiple acceptable options, although some are more advantageous than others. How much time does it take to make such choices and to what extent is the most advantageous option chosen from the available alternatives? To find out, we asked participants to collect points by tapping on any of several targets with their index finger. It did not take participants more time to direct their movements to an advantageous target when there were more options. Participants chose targets that were advantageous because they were easier to reach. Targets could be easier to reach because the finger was already moving in their direction when Amsterdam they appeared, or because they were larger or oriented along the movement direction so that the finger could move faster towards them without missing them. When the target's colour indicated that it was worth more points they chose it slightly less fast, presumably because it generally takes longer to respond to colour than to respond to attributes such as size. They also chose it less often than they probably should have, presumably because the advantage of choosing it was established arbitrarily. We conclude that having many options does not increase the time it takes to move to an adequate target.


Subject(s)
Motion Perception , Psychomotor Performance , Humans , Movement , Reaction Time , Upper Extremity
11.
Exp Brain Res ; 240(4): 1219-1229, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35182186

ABSTRACT

People adjust their on-going movements to changes in the environment. It takes about 100 ms to respond to an abrupt change in a target's position. Does the vigour of such responses depend on the extent to which responding is beneficial? We asked participants to tap on targets that jumped laterally once their finger started to move. In separate blocks of trials the target either remained at the new position so that it was beneficial to respond to the jump, or jumped back almost immediately so that it was disadvantageous to do so. We also varied the target's size, because a smaller, less vigorous adjustment is enough to place the finger within a larger target. There was a systematic relationship between the vigour of the response and the remaining time until the tap: the shorter the remaining time the more vigorous the response. This relationship did not depend on the target's size or whether or not the target jumped back. It was already known that the vigour of responses to target jumps depends on the magnitude of the jump and on the time available for adjusting the movement to that jump. We show that the vigour of the response is precisely tuned to the time available for making the required adjustment irrespective of whether responding in this manner is beneficial.


Subject(s)
Motion Perception , Psychomotor Performance , Humans , Motion Perception/physiology , Movement/physiology , Psychomotor Performance/physiology , Reaction Time/physiology
12.
Exp Brain Res ; 240(10): 2667-2676, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35972522

ABSTRACT

When making a goal-directed movement towards a target, our hand follows abrupt background motion. This response resembles that of a shift in the target's position. Does background motion simply change the position towards which the movement is guided? If so, the response to background motion should resemble the response to a target displacement. To find out whether this is the case, we ran two exploratory studies where we asked participants to hit a moving target at a specified moment. At various times during the hand's movement, the background could move briefly at one of several speeds, and for various durations. The response to abrupt background motion was larger when the background moved later in the movement and when the background moved faster, in line with known responses to target displacements. The response to a second epoch of background motion was smaller than it would have been if there had been no first epoch, in contrast to responses to multiple target displacements. If the background was already moving before the target appeared, the hand even moved in the opposite direction. Thus, the response to background motion and that to a target displacement are clearly not identical, but they do share several features.


Subject(s)
Motion Perception , Hand/physiology , Humans , Motion , Motion Perception/physiology , Psychomotor Performance/physiology , Reaction Time/physiology
13.
Perception ; 51(5): 344-353, 2022 May.
Article in English | MEDLINE | ID: mdl-35354343

ABSTRACT

The size-weight illusion is well-known: if two equally heavy objects differ in size, the large one feels lighter than the small one. Most explanations for this illusion assume that because the information about the relevant attribute (weight itself) is unreliable, information about an irrelevant but correlated attribute (size) is used as well. If such reasoning is correct, one would expect that the illusion can be inverted: if size information is unreliable, weight information will be used to judge size. We explored whether such a weight-size illusion exists by asking participants to lift Styrofoam balls that were coated with glow in the dark paint. The balls (2 sizes, 3 weights) were lifted using a pulley system in complete darkness at 2 distances. Participants reported the size using free magnitude estimation. The visual size information was indeed unreliable: balls that were presented at a 20% larger distance were judged 15% smaller. Nevertheless, the judgments of size were not systematically affected by the 20% weight change (differences < 0.5%). We conclude that because the weight-size illusion does not exist, the mechanism behind the size-weight illusion is specific for judging heaviness.


Subject(s)
Illusions , Weight Perception , Humans , Judgment , Motivation , Size Perception
14.
Perception ; 51(12): 919-922, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36345269

ABSTRACT

When intercepting moving targets, people perform slightly better if they follow their natural tendency to pursue the target with their eyes. Is this because the velocity is judged more precisely when pursuing the target? To find out, we compared how well people could determine which of two sequentially presented moving bars was moving faster. There was always also a static bar on the screen. People judged the moving bar's velocity about 10% more precisely when pursuing it than when fixating the static bar.


Subject(s)
Motion Perception , Humans , Pursuit, Smooth
15.
Biol Cybern ; 115(4): 365-382, 2021 08.
Article in English | MEDLINE | ID: mdl-34341885

ABSTRACT

When learning a movement based on binary success information, one is more variable following failure than following success. Theoretically, the additional variability post-failure might reflect exploration of possibilities to obtain success. When average behavior is changing (as in learning), variability can be estimated from differences between subsequent movements. Can one estimate exploration reliably from such trial-to-trial changes when studying reward-based motor learning? To answer this question, we tried to reconstruct the exploration underlying learning as described by four existing reward-based motor learning models. We simulated learning for various learner and task characteristics. If we simply determined the additional change post-failure, estimates of exploration were sensitive to learner and task characteristics. We identified two pitfalls in quantifying exploration based on trial-to-trial changes. Firstly, performance-dependent feedback can cause correlated samples of motor noise and exploration on successful trials, which biases exploration estimates. Secondly, the trial relative to which trial-to-trial change is calculated may also contain exploration, which causes underestimation. As a solution, we developed the additional trial-to-trial change (ATTC) method. By moving the reference trial one trial back and subtracting trial-to-trial changes following specific sequences of trial outcomes, exploration can be estimated reliably for the three models that explore based on the outcome of only the previous trial. Since ATTC estimates are based on a selection of trial sequences, this method requires many trials. In conclusion, if exploration is a binary function of previous trial outcome, the ATTC method allows for a model-free quantification of exploration.


Subject(s)
Movement , Reward , Learning
16.
Perception ; 50(2): 140-153, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33377849

ABSTRACT

Does recognizing the transformations that gave rise to an object's retinal image contribute to early object recognition? It might, because finding a partially occluded object among similar objects that are not occluded is more difficult than finding an object that has the same retinal image shape without evident occlusion. If this is because the occlusion is recognized as such, we might see something similar for other transformations. We confirmed that it is difficult to find a cookie with a section missing when this was the result of occlusion. It is not more difficult to find a cookie from which a piece has been bitten off than to find one that was baked in a similar shape. On the contrary, the bite marks help detect the bitten cookie. Thus, biting off a part of a cookie has very different effects on visual search than occluding part of it. These findings do not support the idea that observers rapidly and automatically compensate for the ways in which objects' shapes are transformed to give rise to the objects' retinal images. They are easy to explain in terms of detecting characteristic features in the retinal image that such transformations may hide or create.


Subject(s)
Food , Visual Perception , Humans , Pattern Recognition, Visual
17.
Eur J Appl Physiol ; 121(1): 127-140, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32995959

ABSTRACT

PURPOSE: Human sensory and motor systems deteriorate with age. When walking, older adults may therefore find it more difficult to adjust their steps to new visual information, especially considering that such adjustments require control of balance as well as of foot trajectory. Our study investigates the effects of ageing on lower limb responses to unpredictable target shifts. METHODS: Participants walked on a treadmill with projected stepping targets that occasionally shifted in the medial or lateral direction. The shifts occurred at a random moment during the early half of the swing phase of either leg. Kinematic, kinetic and muscle activity data were collected. RESULTS: Older adults responded later and corrected for a smaller proportion of the shift than young adults. The order in which muscle activation changed was similar in both groups, with responses of gluteus medius and semitendinosus from about 120 to 140 ms after the shift. Most muscles responded slightly later to lateral target shifts in the older adults than in the young adults, but this difference was not observed for medial target shifts. Ageing delayed the behavioural responses more than it did the electromyographic (EMG) responses. CONCLUSIONS: Our study suggests that older adults can adjust their walking to small target shifts during the swing phase, but not as well as young adults. Furthermore, muscle strength probably plays a substantial role in the changes in online adjustments during ageing.


Subject(s)
Aging/physiology , Walking , Adult , Aged , Biomechanical Phenomena , Female , Humans , Male , Muscle Contraction , Muscle Strength , Postural Balance , Psychomotor Performance
18.
J Vis ; 21(11): 3, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34617956

ABSTRACT

When making goal-directed movements toward a target, our hand deviates from its path in the direction of sudden background motion. We propose that this manual following response arises because ongoing movements are constantly guided toward the planned movement endpoint. Such guidance is needed to compensate for modest, unexpected self-motion. Our proposal is that the compensation for such self-motion does not involve a sophisticated analysis of the global optic flow. Instead, we propose that any motion in the vicinity of the planned endpoint is attributed to the endpoint's egocentric position having shifted in the direction of the motion. The ongoing movement is then stabilized relative to the shifted endpoint. In six experiments, we investigate what aspects of motion determine this shift of planned endpoint. We asked participants to intercept a moving target when it reached a certain area. During the target's motion, background structures briefly moved either leftward or rightward. Participants' hands responded to background motion even when each background structure was only briefly visible or when the vast majority of background structures remained static. The response was not restricted to motion along the target's path but was most sensitive to motion close to where the target was to be hit, both in the visual field and in depth. In this way, a movement stabilization mechanism provides a comprehensive explanation of many aspects of the manual following response.


Subject(s)
Motion Perception , Hand , Humans , Motion , Movement , Psychomotor Performance
19.
J Physiol ; 598(10): 1987-2000, 2020 05.
Article in English | MEDLINE | ID: mdl-32128815

ABSTRACT

KEY POINTS: Goal-directed arm movements can be adjusted at short latency to target shifts. We tested whether similar adjustments are present during walking on a treadmill with shifting stepping targets. Participants responded at short latency with an adequate gain to small shifts of the stepping targets. Movements of the feet during walking are controlled in a similar way to goal-directed arm movements if balance is not violated. ABSTRACT: It is well-known that goal-directed hand movements can be adjusted to small changes in target location with a latency of about 100 ms. We tested whether people make similar fast adjustments when a target location for foot placement changes slightly as they walk over a flat surface. Participants walked at 3 km/h on a treadmill on which stepping stones were projected. The stones were 50 cm apart in the walking direction. Every 5-8 steps, a stepping stone was unexpectedly displaced by 2.5 cm in the medio-lateral direction. The displacement took place during the first half of the swing phase. We found fast adjustments of the foot trajectory, with a latency of about 155 ms, initiated by changes in muscle activation 123 ms after the perturbation. The responses corrected for about 80% of the perturbation. We conclude that goal-directed movements of the foot are controlled in a similar way to those of the hand, thus also giving very fast adjustments.


Subject(s)
Foot , Walking , Exercise Test , Gait , Humans , Movement , Muscles
20.
Exp Brain Res ; 238(4): 969-979, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32185404

ABSTRACT

There is extensive literature debating whether perceived size is used to guide grasping. A possible reason for not using judged size is that using judged positions might lead to more precise movements. As this argument does not hold for small objects and all studies showing an effect of the Ebbinghaus illusion on grasping used small objects, we hypothesized that size information is used for small objects but not for large ones. Using a modified diagonal illusion, we obtained an effect of about 10% on perceptual judgements, without an effect on grasping, irrespective of object size. We therefore reject our precision hypothesis. We discuss the results in the framework of grasping as moving digits to positions on an object. We conclude that the reported disagreement on the effect of illusions is because the Ebbinghaus illusion not only affects size, but-unlike most size illusions-also affects perceived positions.


Subject(s)
Hand/physiology , Illusions/physiology , Motor Activity/physiology , Size Perception/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL