Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
mBio ; 7(5)2016 09 06.
Article in English | MEDLINE | ID: mdl-27601578

ABSTRACT

UNLABELLED: Zika virus (ZIKV) is a flavivirus that has emerged as a global health threat due in part to its association with congenital abnormalities. Other globally relevant flaviviruses include dengue virus (DENV) and West Nile virus (WNV). High-resolution structures of ZIKV reveal many similarities to DENV and suggest some differences, including an extended glycan loop (D. Sirohi, Z. Chen, L. Sun, T. Klose, T. C. Pierson, et al., 352:467-470, 2016, http://dx.doi.org/10.1126/science.aaf5316) and unique interactions among envelope (E) protein residues that were proposed to confer increased virion stability and contribute mechanistically to the distinctive pathobiology of ZIKV (V. A. Kostyuchenko, E. X. Lim, S. Zhang, G. Fibriansah, T. S. Ng, et al., Nature 533:425-428, 2016, http://dx.doi.org/10.1038/nature17994). However, in the latter study, virus stability was inferred by measuring the loss of infectivity following a short incubation period. Here, we rigorously assessed the relative stability of ZIKV, DENV, and WNV by measuring changes in infectivity following prolonged incubation at physiological temperatures. At 37°C, the half-life of ZIKV was approximately twice as long as the half-life of DENV (11.8 and 5.2 h, respectively) but shorter than that of WNV (17.7 h). Incubation at 40°C accelerated the loss of ZIKV infectivity. Increasing virion maturation efficiency modestly increased ZIKV stability, as observed previously with WNV and DENV. Finally, mutations at E residues predicted to confer increased stability to ZIKV did not affect virion half-life. Our results demonstrate that ZIKV is not uniquely stable relative to other flaviviruses, suggesting that its unique pathobiology is explained by an alternative mechanism. IMPORTANCE: Zika virus (ZIKV) belongs to the Flavivirus genus, which includes other clinically relevant mosquito-borne pathogens such as dengue virus (DENV) and West Nile virus (WNV). Historically, ZIKV infection was characterized by a self-limiting, mild disease, but recent outbreaks have been associated with severe clinical complications, including Guillain-Barré syndrome and microcephaly, which are atypical of other flavivirus infections. Moreover, ZIKV has been detected in saliva, urine, and semen, and it may be sexually transmitted. Analysis of a high-resolution cryo-electron microscopic reconstruction of ZIKV hypothesized that the unusual stability of this virus contributes to its distinctive pathobiology. Here, we directly compared the stability of ZIKV to that of other flaviviruses following prolonged incubation in solution at physiological temperatures. We found that the stability of multiple ZIKV strains, including those from recent outbreaks, is intermediate between that of DENV and WNV, suggesting an alternative explanation for the unique clinical manifestations of ZIKV infection.


Subject(s)
Dengue Virus/physiology , Microbial Viability/radiation effects , West Nile virus/physiology , Zika Virus/physiology , Animals , Cell Line , Chlorocebus aethiops , DNA Mutational Analysis , Humans , Temperature , Time Factors , Viral Envelope Proteins/genetics , Viral Load , Virus Cultivation , Zika Virus/genetics
2.
Cell Rep ; 16(6): 1485-1491, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27481466

ABSTRACT

Recent epidemics of Zika virus (ZIKV) have been associated with congenital malformation during pregnancy and Guillain-Barré syndrome. There are two ZIKV lineages (African and Asian) that share >95% amino acid identity. Little is known regarding the ability of neutralizing antibodies elicited against one lineage to protect against the other. We investigated the breadth of the neutralizing antibody response following ZIKV infection by measuring the sensitivity of six ZIKV strains to neutralization by ZIKV-confirmed convalescent human serum or plasma samples. Contemporary Asian and early African ZIKV strains were similarly sensitive to neutralization regardless of the cellular source of virus. Furthermore, mouse immune serum generated after infection with African or Asian ZIKV strains was capable of neutralizing homologous and heterologous ZIKV strains equivalently. Because our study only defines a single ZIKV serotype, vaccine candidates eliciting robust neutralizing antibody responses should inhibit infection of both ZIKV lineages, including strains circulating in the Americas.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/pharmacology , Immune Sera/immunology , Zika Virus Infection/drug therapy , Zika Virus/pathogenicity , Humans , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL