Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(13): e2222073120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36961924

ABSTRACT

Binding to the host cell receptors, CD4 and CCR5/CXCR4, triggers large-scale conformational changes in the HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] that promote virus entry into the cell. CD4-mimetic compounds (CD4mcs) comprise small organic molecules that bind in the highly conserved CD4-binding site of gp120 and prematurely induce inactivating Env conformational changes, including shedding of gp120 from the Env trimer. By inducing more "open," antibody-susceptible Env conformations, CD4mcs also sensitize HIV-1 virions to neutralization by antibodies and infected cells to antibody-dependent cellular cytotoxicity (ADCC). Here, we report the design, synthesis, and evaluation of novel CD4mcs based on an indoline scaffold. Compared with our current lead indane scaffold CD4mc, BNM-III-170, several indoline CD4mcs exhibit increased potency and breadth against HIV-1 variants from different geographic clades. Viruses that were selected for resistance to the lead indane CD4mc, BNM-III-170, are susceptible to inhibition by the indoline CD4mcs. The indoline CD4mcs also potently sensitize HIV-1-infected cells to ADCC mediated by plasma from HIV-1-infected individuals. Crystal structures indicate that the indoline CD4mcs gain potency compared to the indane CD4mcs through more favorable π-π overlap from the indoline pose and by making favorable contacts with the vestibule of the CD4-binding pocket on gp120. The rational design of indoline CD4mcs thus holds promise for further improvements in antiviral activity, potentially contributing to efforts to treat and prevent HIV-1 infection.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , Antibody-Dependent Cell Cytotoxicity , HIV Envelope Protein gp120 , CD4 Antigens/metabolism , HIV Antibodies/pharmacology
2.
Nature ; 568(7752): 415-419, 2019 04.
Article in English | MEDLINE | ID: mdl-30971821

ABSTRACT

The HIV-1 envelope glycoprotein (Env) trimer mediates cell entry and is conformationally dynamic1-8. Imaging by single-molecule fluorescence resonance energy transfer (smFRET) has revealed that, on the surface of intact virions, mature pre-fusion Env transitions from a pre-triggered conformation (state 1) through a default intermediate conformation (state 2) to a conformation in which it is bound to three CD4 receptor molecules (state 3)8-10. It is currently unclear how these states relate to known structures. Breakthroughs in the structural characterization of the HIV-1 Env trimer have previously been achieved by generating soluble and proteolytically cleaved trimers of gp140 Env that are stabilized by a disulfide bond, an isoleucine-to-proline substitution at residue 559 and a truncation at residue 664 (SOSIP.664 trimers)5,11-18. Cryo-electron microscopy studies have been performed with C-terminally truncated Env of the HIV-1JR-FL strain in complex with the antibody PGT15119. Both approaches have revealed similar structures for Env. Although these structures have been presumed to represent the pre-triggered state 1 of HIV-1 Env, this hypothesis has never directly been tested. Here we use smFRET to compare the conformational states of Env trimers used for structural studies with native Env on intact virus. We find that the constructs upon which extant high-resolution structures are based predominantly occupy downstream conformations that represent states 2 and 3. Therefore, the structure of the pre-triggered state-1 conformation of viral Env that has been identified by smFRET and that is preferentially stabilized by many broadly neutralizing antibodies-and thus of interest for the design of immunogens-remains unknown.


Subject(s)
Fluorescence Resonance Energy Transfer , HIV-1/chemistry , Single Molecule Imaging , env Gene Products, Human Immunodeficiency Virus/chemistry , Animals , Antibodies, Neutralizing/immunology , Cattle , Disulfides/chemistry , HEK293 Cells , HIV-1/genetics , HIV-1/immunology , Humans , Models, Molecular , Mutation , Protein Conformation , Protein Multimerization , Protein Stability , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
3.
J Virol ; 97(6): e0032723, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37255444

ABSTRACT

The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. IMPORTANCE The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.


Subject(s)
HIV Envelope Protein gp120 , HIV Envelope Protein gp41 , HIV-1 , Broadly Neutralizing Antibodies , env Gene Products, Human Immunodeficiency Virus , Glycoproteins/chemistry , HIV Antibodies , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp41/chemistry , Lipids , Protein Conformation , Styrene/metabolism , Detergents
4.
J Virol ; 97(1): e0163822, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36511698

ABSTRACT

Small CD4-mimetic compound (CD4mc), which inhibits the interaction between gp120 with CD4, acts as an entry inhibitor and induces structural changes in the HIV-1 envelope glycoprotein trimer (Env) through its insertion within the Phe43 cavity of gp120. We recently developed YIR-821, a novel CD4mc, that has potent antiviral activity and lower toxicity than the prototype NBD-556. To assess the possibility of clinical application of YIR-821, we tested its antiviral activity using a panel of HIV-1 pseudoviruses from different subtypes. YIR-821 displayed entry inhibitor activity against 53.5% (21/40) of the pseudoviruses tested and enhanced neutralization mediated by coreceptor binding site (CoRBS) antibodies in 50% (16/32) of these. Furthermore, when we assessed the antiviral effects using a panel of pseudoviruses and autologous plasma IgG, enhancement of antibody-mediated neutralization activity was observed for 48% (15/31) of subtype B strains and 51% (28/55) of non-B strains. The direct antiviral activity of YIR-821 as an entry inhibitor was observed in 53% of both subtype B (27/51) and non-B subtype (40/75) pseudoviruses. Enhancement of antibody-dependent cellular cytotoxicity was also observed with YIR-821 for all six selected clinical isolates, as well as for the transmitted/founder (T/F) CH58 virus-infected cells. The sequence diversity in the CD4 binding site as well as other regions, such as the gp120 inner domain layers or gp41, may be involved in the multiple mechanisms related to the sensitive/resistant phenotype of the virus to YIR-821. Our findings may facilitate the clinical application of YIR-821. IMPORTANCE Small CD4-mimetic compound (CD4mc) interacts with the Phe43 cavity and triggers conformational changes, enhancing antibody-mediated neutralization and antibody-dependent cellular cytotoxicity (ADCC). Here, we evaluated the effect of YIR-821, a novel CD4mc, against clinical isolates, including both subtype B and non-B subtype viruses. Our results confirm the desirable properties of YIR-821, which include entry inhibition, enhancement of IgG-neutralization, binding, and ADCC, in addition to low toxicity and long half-life in a rhesus macaque model, that might facilitate the clinical application of this novel CD4mc. Our observation of primary viruses that are resistant to YIR-821 suggests that further development of CD4mcs with different structural properties is required.


Subject(s)
HIV Fusion Inhibitors , HIV Infections , HIV-1 , Animals , CD4 Antigens/metabolism , HIV Antibodies/blood , HIV Envelope Protein gp120 , HIV Fusion Inhibitors/pharmacology , HIV Infections/drug therapy , HIV-1/drug effects , Immunoglobulin G/blood , Macaca mulatta
5.
J Am Chem Soc ; 145(33): 18240-18246, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37561549

ABSTRACT

The stereoselective total synthesis of structure 1 assigned to the macrolide natural product neaumycin B is reported in a 2.3% overall yield on 90 mg scale. The synthesis features a gram-scale nickel-catalyzed reductive cross-coupling/spiroketalization tactic to construct the spiroketal core of neaumycin B. The stereostructures of the C3-C6, C8-C14, and C20-C41 segments of synthetic neaumycin B were unambiguously verified by X-ray crystallography.


Subject(s)
Anti-Bacterial Agents , Molecular Structure , Anti-Bacterial Agents/chemistry , Stereoisomerism
6.
J Virol ; 96(7): e0187821, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35289647

ABSTRACT

Binding to the receptor, CD4, drives the pretriggered, "closed" (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ([gp120/gp41]3) into more "open" conformations. HIV-1 Env on the viral membrane is maintained in a State-1 conformation that resists binding and neutralization by commonly elicited antibodies. Premature triggering of Env before the virus engages a target cell typically leads to increased susceptibility to spontaneous inactivation or ligand-induced neutralization. Here, we showed that single amino acid substitutions in the gp41 membrane-proximal external region (MPER) of a primary HIV-1 strain resulted in viral phenotypes indicative of premature triggering of Env to downstream conformations. Specifically, the MPER changes reduced viral infectivity and globally increased virus sensitivity to poorly neutralizing antibodies, soluble CD4, a CD4-mimetic compound, and exposure to cold. In contrast, the MPER mutants exhibited decreased sensitivity to the State 1-preferring inhibitor, BMS-806, and to the PGT151 broadly neutralizing antibody. Depletion of cholesterol from virus particles did not produce the same State 1-destabilizing phenotypes as MPER alterations. Notably, State 1-stabilizing changes in Env distant from the MPER could minimize the phenotypic effects of MPER alteration but did not affect virus sensitivity to cholesterol depletion. Thus, membrane-proximal gp41 elements contribute to the maintenance of the pretriggered Env conformation. The conformationally disruptive effects of MPER changes can be minimized by distant State 1-stabilizing Env modifications, a strategy that may be useful in preserving the native pretriggered state of Env. IMPORTANCE The pretriggered shape of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) is a major target for antibodies that can neutralize many strains of the virus. An effective HIV-1 vaccine may need to raise these types of antibodies, but this goal has proven difficult. One reason is that the pretriggered shape of Env is unstable and dependent on interactions near the viral membrane. Here, we showed that the membrane-proximal external region (MPER) of Env plays an important role in maintaining Env in a pretriggered shape. Alterations in the MPER resulted in global changes in Env conformation that disrupted its pretriggered shape. We also found that these disruptive effects of MPER changes could be minimized by distant Env modifications that stabilized the pretriggered shape. These modifications may be useful for preserving the native shape of Env for structural and vaccine studies.


Subject(s)
HIV Infections , HIV-1 , Antibodies, Neutralizing , Gene Products, env/chemistry , Gene Products, env/immunology , Glycoproteins/chemistry , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/chemistry , HIV-1/immunology , Humans
7.
J Virol ; 96(17): e0063622, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35980207

ABSTRACT

Binding to the host cell receptors CD4 and CCR5/CXCR4 triggers conformational changes in the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer that promote virus entry. CD4 binding allows the gp120 exterior Env to bind CCR5/CXCR4 and induces a short-lived prehairpin intermediate conformation in the gp41 transmembrane Env. Small-molecule CD4-mimetic compounds (CD4mcs) bind within the conserved Phe-43 cavity of gp120, near the binding site for CD4. CD4mcs like BNM-III-170 inhibit HIV-1 infection by competing with CD4 and by prematurely activating Env, leading to irreversible inactivation. In cell culture, we selected and analyzed variants of the primary HIV-1AD8 strain resistant to BNM-III-170. Two changes (S375N and I424T) in gp120 residues that flank the Phe-43 cavity each conferred an ~5-fold resistance to BNM-III-170 with minimal fitness cost. A third change (E64G) in layer 1 of the gp120 inner domain resulted in ~100-fold resistance to BNM-III-170, ~2- to 3-fold resistance to soluble CD4-Ig, and a moderate decrease in viral fitness. The gp120 changes additively or synergistically contributed to BNM-III-170 resistance. The sensitivity of the Env variants to BNM-III-170 inhibition of virus entry correlated with their sensitivity to BNM-III-170-induced Env activation and shedding of gp120. Together, the S375N and I424T changes, but not the E64G change, conferred >100-fold and 33-fold resistance to BMS-806 and BMS-529 (temsavir), respectively, potent HIV-1 entry inhibitors that block Env conformational transitions. These studies identify pathways whereby HIV-1 can develop resistance to CD4mcs and conformational blockers, two classes of entry inhibitors that target the conserved gp120 Phe-43 cavity. IMPORTANCE CD4-mimetic compounds (CD4mcs) and conformational blockers like BMS-806 and BMS-529 (temsavir) are small-molecule inhibitors of human immunodeficiency virus (HIV-1) entry into host cells. Although CD4mcs and conformational blockers inhibit HIV-1 entry by different mechanisms, they both target a pocket on the viral envelope glycoprotein (Env) spike that is used for binding to the receptor CD4 and is highly conserved among HIV-1 strains. Our study identifies changes near this pocket that can confer various levels of resistance to the antiviral effects of a CD4mc and conformational blockers. We relate the antiviral potency of a CD4mc against this panel of HIV-1 variants to the ability of the CD4mc to activate changes in Env conformation and to induce the shedding of the gp120 exterior Env from the spike. These findings will guide efforts to improve the potency and breadth of small-molecule HIV-1 entry inhibitors.


Subject(s)
CD4 Antigens , Drug Resistance, Viral , Glycoproteins , Guanidines , Indenes , Mutation , env Gene Products, Human Immunodeficiency Virus , Binding Sites/genetics , CD4 Antigens/chemistry , CD4 Antigens/metabolism , Drug Resistance, Viral/genetics , Glycoproteins/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism , Guanidines/chemistry , Guanidines/pharmacology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Envelope Protein gp41/metabolism , HIV Fusion Inhibitors/chemistry , HIV Fusion Inhibitors/pharmacology , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/chemistry , HIV-1/drug effects , HIV-1/metabolism , Humans , Indenes/chemistry , Indenes/pharmacology , Protein Conformation/drug effects , Receptors, HIV/chemistry , Receptors, HIV/metabolism , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
8.
J Virol ; 96(8): e0166821, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35343783

ABSTRACT

Binding to the receptor, CD4, drives the pretriggered, "closed" (state-1) conformation of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer into more "open" conformations (states 2 and 3). Broadly neutralizing antibodies, which are elicited inefficiently, mostly recognize the state-1 Env conformation, whereas the more commonly elicited poorly neutralizing antibodies recognize states 2/3. HIV-1 Env metastability has created challenges for defining the state-1 structure and developing immunogens mimicking this labile conformation. The availability of functional state-1 Envs that can be efficiently cross-linked at lysine and/or acidic amino acid residues might assist these endeavors. To that end, we modified HIV-1AD8 Env, which exhibits an intermediate level of triggerability by CD4. We introduced lysine/acidic residues at positions that exhibit such polymorphisms in natural HIV-1 strains. Env changes that were tolerated with respect to gp120-gp41 processing, subunit association, and virus entry were further combined. Two common polymorphisms, Q114E and Q567K, as well as a known variant, A582T, additively rendered pseudoviruses resistant to cold, soluble CD4, and a CD4-mimetic compound, phenotypes indicative of stabilization of the pretriggered state-1 Env conformation. Combining these changes resulted in two lysine-rich HIV-1AD8 Env variants (E.2 and AE.2) with neutralization- and cold-resistant phenotypes comparable to those of natural, less triggerable tier 2/3 HIV-1 isolates. Compared with these and the parental Envs, the E.2 and AE.2 Envs were cleaved more efficiently and exhibited stronger gp120-trimer association in detergent lysates. These highly cross-linkable Envs enriched in a pretriggered conformation should assist characterization of the structure and immunogenicity of this labile state. IMPORTANCE The development of an efficient vaccine is critical for combating HIV-1 infection worldwide. However, the instability of the pretriggered shape (state 1) of the viral envelope glycoprotein (Env) makes it difficult to raise neutralizing antibodies against HIV-1. Here, by introducing multiple changes in Env, we derived two HIV-1 Env variants that are enriched in state 1 and can be efficiently cross-linked to maintain this shape. These Env complexes are more stable in detergent, assisting their purification. Thus, our study provides a path to a better characterization of the native pretriggered Env, which should assist vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , env Gene Products, Human Immunodeficiency Virus , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , Detergents , Glycoproteins/chemistry , Glycoproteins/immunology , HIV Antibodies/chemistry , HIV Antibodies/metabolism , HIV Envelope Protein gp120/genetics , HIV Infections/prevention & control , HIV-1/chemistry , HIV-1/genetics , HIV-1/immunology , Humans , Lysine , Protein Conformation , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
9.
J Virol ; 95(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33298541

ABSTRACT

The HIV-1 envelope glycoprotein (Env) trimer [(gp120/gp41)3] is a metastable complex expressed at the surface of viral particles and infected cells that samples different conformations. Before engaging CD4, Env adopts an antibody-resistant "closed" conformation (State 1). CD4 binding triggers an intermediate conformation (State 2) and then a more "open" conformation (State 3) that can be recognized by non-neutralizing antibodies (nnAbs) such as those that recognize the coreceptor binding site (CoRBS). Binding of antibodies to the CoRBS permits another family of nnAbs, the anti-cluster A family of Abs which target the gp120 inner domain, to bind and stabilize an asymmetric conformation (State 2A). Cells expressing Env in this conformation are susceptible to antibody-dependent cellular cytotoxicity (ADCC). This conformation can be stabilized by small-molecule CD4 mimetics (CD4mc) or soluble CD4 (sCD4) in combination with anti-CoRBS Ab and anti-cluster A antibodies. The precise stoichiometry of each component that permits this sequential opening of Env remains unknown. Here, we used a cell-based ELISA (CBE) assay to evaluate each component individually. In this assay we used a "trimer mixing" approach by combining wild-type (wt) subunits with subunits impaired for CD4 or CoRBS Ab binding. This enabled us to show that State 2A requires all three gp120 subunits to be bound by sCD4/CD4mc and anti-CoRBS Abs. Two of these subunits can then bind anti-cluster A Abs. Altogether, our data suggests how this antibody vulnerable Env conformation is stabilized.Importance Stabilization of HIV-1 Env State 2A has been shown to sensitize infected cells to ADCC. State 2A can be stabilized by a "cocktail" composed of CD4mc, anti-CoRBS and anti-cluster A Abs. We present evidence that optimal State 2A stabilization requires all three gp120 subunits to be bound by both CD4mc and anti-CoRBS Abs. Our study provides valuable information on how to stabilize this ADCC-vulnerable conformation. Strategies aimed at stabilizing State 2A might have therapeutic utility.

10.
Arch Biochem Biophys ; 727: 109296, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35594923

ABSTRACT

A tritiated derivative of the sponge-derived natural product spongistatin 1 was prepared, and its interactions with tubulin were examined. [3H]Spongistatin 1 was found to bind rapidly to tubulin at a single site (the low specific activity of the [3H]spongistatin 1, 0.75 Ci/mmol, prevented our defining an association rate), and the inability of spongistatin 1 to cause an aberrant assembly reaction was confirmed. Spongistatin 1 bound to tubulin very tightly, and we could detect no significant dissociation reaction from tubulin. The tubulin-[3H]spongistatin 1 complex did dissociate in 8 M urea, so there was no evidence for covalent bond formation. Apparent KD values were obtained by Scatchard analysis of binding data and by Hummel-Dreyer chromatography (3.5 and 1.1 µM, respectively). The effects of a large cohort of vinca domain drugs on the binding of [3H]spongistatin 1 to tubulin were evaluated. Compounds that did not cause aberrant assembly reactions (halichondrin B, eribulin, maytansine, and rhizoxin) caused little inhibition of [3H]spongistatin 1 binding. Little inhibition also occurred with the peptides dolastatin 15, its active pentapeptide derivative, vitilevuamide, or diazonamide A, nor with the vinca alkaloid vinblastine. Strong inhibition was observed with dolastatin 10, hemiasterlin, and cryptophycin 1, all of which cause aberrant assembly reactions that might actually mask the spongistatin 1 binding site. Spongistatin 5 was found to be a competitive inhibitor of [3H]spongistatin 1 binding, with an apparent Ki of 2.2 µM. We propose that the strong picomolar cytotoxicity of spongistatin 1 probably derives from its extremely tight binding to tubulin.


Subject(s)
Antineoplastic Agents , Tubulin , Antineoplastic Agents/pharmacology , Binding Sites , Macrolides , Microtubules , Tubulin/chemistry , Vinblastine/metabolism , Vinblastine/pharmacology
11.
Mar Drugs ; 20(7)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35877711

ABSTRACT

The mandelalides are complex macrolactone natural products with distinct macrocycle motifs and a bioactivity profile that is heavily influenced by compound glycosylation. Mandelalides A and B are direct inhibitors of mitochondrial ATP synthase (complex V) and therefore more toxic to mammalian cells with an oxidative metabolic phenotype. To provide further insight into the pharmacology of the mandelalides, we studied the AMP-activated protein kinase (AMPK) energy stress pathway and report that mandelalide A is an indirect activator of AMPK. Wild-type mouse embryonic fibroblasts (MEFs) and representative human non-small cell lung cancer (NSCLC) cells showed statistically significant increases in phospho-AMPK (Thr172) and phospho-ACC (Ser79) in response to mandelalide A. Mandelalide L, which also harbors an A-type macrocycle, induced similar increases in phospho-AMPK (Thr172) and phospho-ACC (Ser79) in U87-MG glioblastoma cells. In contrast, MEFs co-treated with an AMPK inhibitor (dorsomorphin), AMPKα-null MEFs, or NSCLC cells lacking liver kinase B1 (LKB1) lacked this activity. Mandelalide A was significantly more cytotoxic to AMPKα-null MEFs than wild-type cells, suggesting that AMPK activation serves as a protective response to mandelalide-induced depletion of cellular ATP. However, LKB1 status alone was not predictive of the antiproliferative effects of mandelalide A against NSCLC cells. When EGFR status was considered, erlotinib and mandelalide A showed strong cytotoxic synergy in combination against erlotinib-resistant 11-18 NSCLC cells but not against erlotinib-sensitive PC-9 cells. Finally, prolonged exposures rendered mandelalide A, a potent and efficacious cytotoxin, against a panel of human glioblastoma cell types regardless of the underlying metabolic phenotype of the cell. These results add biological relevance to the mandelalide series and provide the basis for their further pre-clinical evaluation as ATP synthase inhibitors and secondary activators of AMPK.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Glioblastoma , Lung Neoplasms , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Erlotinib Hydrochloride , Fibroblasts/metabolism , Humans , Lung Neoplasms/drug therapy , Macrolides , Mammals/metabolism , Mice , Phosphorylation
12.
Angew Chem Int Ed Engl ; 61(28): e202204884, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35608327

ABSTRACT

A highly convergent total synthesis of (-)-bastimolide A (1), a polyhydroxy antimalarial macrolide, has been achieved via a longest linear sequence of twenty steps from commercially available glycidyl ethers. Type I Anion Relay Chemistry (ARC) coupling tactics enable rapid construction of the molecule's 1,5-polylol backbone. A late-stage B-alkyl Suzuki-Miyaura union and an Evans-modified Mukaiyama macrolactonization generate the forty-membered Z-α,ß-unsaturated macrocyclic lactone.


Subject(s)
Antimalarials , Macrolides , Anions , Lactones , Molecular Structure , Stereoisomerism
13.
J Virol ; 94(17)2020 08 17.
Article in English | MEDLINE | ID: mdl-32522853

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer of gp120-gp41 heterodimers mediates virus entry into CD4-positive (CD4+) cells. Single-molecule fluorescence resonance energy transfer (smFRET) has revealed that native Env on the surface of viruses predominantly exists in a pretriggered conformation (state 1) that is preferentially recognized by many broadly neutralizing antibodies (bNAbs). Env is activated by binding receptor CD4, which drives transitions through a default intermediate conformation (state 2) into the three-CD4-bound open conformation (state 3). The application of smFRET to assess the conformational state of existing Env constructs and ligand complexes recently revealed that all current high-resolution structures correspond to downstream states 2 and 3. The structure of state 1, therefore, remains unknown. We sought to identify conditions whereby HIV-1 Env could be stabilized in the pretriggered state 1 for possible structural characterization. Shedding of gp120, known to severely complicate structural studies, can be prevented by using the uncleaved gp160JR-FL precursor with alterations in the protease cleavage site (R508S/R511S) or by introducing a disulfide bridge between gp120 and gp41 designated "SOS" (A501C/T605C). smFRET demonstrated that both shedding-preventing modifications shifted the conformational landscape of Env downstream toward states 2 and 3. However, both membrane-bound Env proteins on the surface of intact viruses remained conformationally dynamic, responsive to state-stabilizing ligands, and able to be stabilized in state 1 by specific ligands such as the Bristol-Myers Squibb (BMS) entry inhibitors. The here-described identification of state 1-stabilizing conditions may enable structural characterization of the state 1 conformation of HIV-1 Env.IMPORTANCE The HIV-1 envelope glycoprotein (Env) opens in response to receptor CD4 binding from a pretriggered (state 1) conformation through a necessary intermediate to the three-CD4-bound conformation. The application of smFRET to test the conformational state of existing Env constructs and ligand complexes used for high-resolution structures recently revealed that they correspond to the downstream conformations. The structure of the pretriggered Env conformation, preferentially recognized by broadly neutralizing antibodies, remains unknown. Here, we identify experimental conditions that stabilize membrane-bound and shedding-resistant virus Env trimers in state 1, potentially facilitating structural characterization of this unknown conformational state.


Subject(s)
Glycoproteins/chemistry , Glycoproteins/immunology , HIV-1/immunology , Virus Shedding/immunology , Virus Shedding/physiology , Antibodies, Neutralizing/immunology , CD4 Antigens , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Disulfides , HEK293 Cells , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/immunology , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Virus Internalization , env Gene Products, Human Immunodeficiency Virus/immunology
14.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32161177

ABSTRACT

During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system.IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine.


Subject(s)
Glycoproteins/chemistry , Glycoproteins/drug effects , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/drug effects , HIV-1/immunology , Piperazines/pharmacology , Virus Internalization/drug effects , A549 Cells , Antibodies, Neutralizing/immunology , CD4 Antigens/drug effects , CD4 Antigens/metabolism , Glycoproteins/genetics , HEK293 Cells , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV-1/drug effects , HIV-1/genetics , Humans , Ligands , Models, Molecular , Protein Conformation
15.
Acc Chem Res ; 53(4): 988-1000, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32270672

ABSTRACT

Multicomponent union tactics in which three or more fragments are rapidly connected are highly prized in the construction of architecturally complex natural products. Anion Relay Chemistry (ARC), a multicomponent union tactic, has just such potential to elaborate structurally diverse scaffolds in a single operation with excellent stereochemical control. Conceptually, the ARC tactic can be divided into two main classes: "Through-Bond," by the relay of negative charge through the bonding system of a molecule; and "Through-Space," by the migration of negative charge across space by a transfer agent. "Through-Space" Anion Relay Chemistry, the focus of this Account, can be further subdivided into two types: Type I ARC, originated from the Tietze-Schaumann-Smith coupling reaction, which for the first time permits controllable Brook rearrangements to construct unsymmetrical adducts, and as such has been successfully employed in the total syntheses of diverse natural products, including the mycoticins, bryostatin 1, spongistatins, rimocidin, indolizidine alkaloids, and enigmazole A; and Type II ARC, central to which is the design of novel bifunctional linchpins that enable rapid assembly of linear and cyclic fragments with diverse architectural features, ranging from polyols, spiroketals, and polyenes to polypropionate scaffolds. Recently, the Type II ARC tactic has been exploited as the key construction tactic in the total syntheses of the spirastrellolides, the cryptocarya acetates, secu'amamine A, mandelalide A, and nahuoic acid Ci (Bii). This Account will present the evolution of both the Type I and Type II Anion Relay tactics, in conjunction with some prominent applications.


Subject(s)
Biological Products/chemistry , Biological Products/chemical synthesis , Stereoisomerism
16.
J Org Chem ; 86(19): 13583-13597, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34510901

ABSTRACT

A late-stage photoisomerization/cyclization union tactic, in conjunction with Type I Anion Relay Chemistry (ARC), permits enantioselective total syntheses and then biological evaluation of (+)-peniciketals A and B. The photochemical protocol was further showcased by an efficient three-step construction of the architecturally complex polycyclic skeleton found in (-)-diocollettines A. The mechanism and diastereoselectivity of the photochemical protocol have also been explored by both experiment and density functional theory calculations.


Subject(s)
Cyclization , Anions , Molecular Structure
17.
Phys Chem Chem Phys ; 23(11): 6433-6437, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33710175

ABSTRACT

Fluorescent amino acids (FAAs) offer significant advantages over fluorescent proteins in applications where the fluorophore size needs to be limited or minimized. A long-sought goal in biological spectroscopy/microcopy is to develop visible FAAs by modifying the indole ring of tryptophan. Herein, we examine the absorption spectra of a library of 4-substituted indoles and find that the frequency of the absorption maximum correlates linearly with the global electrophilicity index of the substituent. This finding permits us to identify two promising candidates, 4-formyltryptophan (4CHO-Trp) and 4-nitrotryptophan (4NO2-Trp), both of which can be excited by visible light. Further fluorescence measurements indicate that while 4CHO-indole (and 4CHO-Trp) emits cyan fluorescence with a reasonably large quantum yield (ca. 0.22 in ethanol), 4NO2-indole is essentially non-fluorescent, suggesting that 4CHO-Trp (4NO2-Trp) could be useful as a fluorescence reporter (quencher). In addition, we present a simple method for synthesizing 4CHO-Trp.


Subject(s)
Indoles/chemistry , Light , Tryptophan/chemistry , Fluorescent Dyes/chemistry , Quantum Theory , Spectrometry, Fluorescence
18.
Chin Chem Lett ; 32(1): 441-444, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33994753

ABSTRACT

Experiments indicate that a catalytic amount of CuI plays an important role in the siloxane-mediated Pd-catalyzed cross-coupling reactions with the direct use of organolithium reagents. Addition of organolithium to the siloxane transfer agent generates an organosilicon intermediate. DFT calculations indicate that CuI initially accelerates the Si-Pd(II) transmetalation of the organosilicon intermediate by the formation of CuI2 -. Subsequently, CuI2 - works as a shuttle between the Si-Cu(I) and Cu(I)-Pd(II) transmetalation processes.

19.
Mol Pharmacol ; 98(2): 156-167, 2020 08.
Article in English | MEDLINE | ID: mdl-32591477

ABSTRACT

The natural product (+)-discodermolide (DDM) is a microtubule stabilizing agent and potent inducer of senescence. We refined the structure of DDM and evaluated the activity of novel congeners in triple negative breast and ovarian cancers, malignancies that typically succumb to taxane resistance. Previous structure-activity analyses identified the lactone and diene as moieties conferring anticancer activity, thus identifying priorities for the structural refinement studies described herein. Congeners possessing the monodiene with a simplified lactone had superior anticancer efficacy relative to taxol, particularly in resistant models. Specifically, one of these congeners, B2, demonstrated 1) improved pharmacologic properties, specifically increased maximum response achievable and area under the curve, and decreased EC50; 2) a uniform dose-response profile across genetically heterogeneous cancer cell lines relative to taxol or DDM; 3) reduced propensity for senescence induction relative to DDM; 4) superior long-term activity in cancer cells versus taxol or DDM; and 5) attenuation of metastatic characteristics in treated cancer cells. To contrast the binding of B2 versus DDM in tubulin, X-ray crystallography studies revealed a shift in the position of the lactone ring associated with removal of the C2-methyl and C3-hydroxyl. Thus, B2 may be more adaptable to changes in the taxane site relative to DDM that could account for its favorable properties. In conclusion, we have identified a DDM congener with broad range anticancer efficacy that also has decreased risk of inducing chemotherapy-mediated senescence. SIGNIFICANCE STATEMENT: Here, we describe the anticancer activity of novel congeners of the tubulin-polymerizing molecule (+)-discodermolide. A lead molecule is identified that exhibits an improved dose-response profile in taxane-sensitive and taxane-resistant cancer cell models, diminished risk of chemotherapy-mediated senescence, and suppression of tumor cell invasion endpoints. X-ray crystallography studies identify subtle changes in the pose of binding to ß-tubulin that could account for the improved anticancer activity. These findings support continued preclinical development of discodermolide, particularly in the chemorefractory setting.


Subject(s)
Alkanes/chemistry , Carbamates/chemistry , Lactones/chemical synthesis , Ovarian Neoplasms/metabolism , Pyrones/chemistry , Triple Negative Breast Neoplasms/metabolism , Tubulin Modulators/chemical synthesis , A549 Cells , Area Under Curve , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Female , Humans , Lactones/chemistry , Lactones/pharmacology , Molecular Structure , Ovarian Neoplasms/drug therapy , Taxoids/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
20.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31391272

ABSTRACT

Human immunodeficiency virus (HIV-1) entry into cells is mediated by the viral envelope glycoprotein (Env) trimer, which consists of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. When gp120 binds sequentially to the receptors CD4 and CCR5 on the target cell, the metastable Env trimer is triggered to undergo entry-related conformational changes. PF-68742 is a small molecule that inhibits the infection of a subset of HIV-1 strains by interfering with an Env function other than receptor binding. Determinants of HIV-1 resistance to PF-68742 map to the disulfide loop and fusion peptide of gp41. Of the four possible PF-68742 stereoisomers, only one, MF275, inhibited the infection of CD4-positive CCR5-positive cells by some HIV-1 strains. MF275 inhibition of these HIV-1 strains occurred after CD4 binding but before the formation of the gp41 six-helix bundle. Unexpectedly, MF275 activated the infection of CD4-negative CCR5-positive cells by several HIV-1 strains resistant to the inhibitory effects of the compound in CD4-positive target cells. In contrast to CD4 complementation by CD4-mimetic compounds, activation of CD4-independent infection by MF275 did not depend upon the availability of the gp120 Phe 43 cavity. Sensitivity to inhibitors indicates that MF275-activated virus entry requires formation/exposure of the gp41 heptad repeat (HR1) as well as CCR5 binding. MF275 apparently activates a virus entry pathway parallel to that triggered by CD4 and CD4-mimetic compounds. Strain-dependent divergence in Env conformational transitions allows different outcomes, inhibition or activation, in response to MF275. Understanding the mechanisms of MF275 activity should assist efforts to optimize its utility.IMPORTANCE Envelope glycoprotein (Env) spikes on the surface of human immunodeficiency virus (HIV-1) bind target cell receptors, triggering changes in the shape of Env. We studied a small molecule, MF275, that also induced shape changes in Env. The consequences of MF275 interaction with Env depended on the HIV-1 strain, with infection by some viruses inhibited and infection by other viruses enhanced. These studies reveal the strain-dependent diversity of HIV-1 Envs as they undergo shape changes in proceeding down the entry pathway. Appreciation of this diversity will assist attempts to develop broadly active inhibitors of HIV-1 entry.


Subject(s)
HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/metabolism , HIV Infections/drug therapy , HIV-1/classification , HIV-1/drug effects , Pyridones/pharmacology , Sulfonamides/pharmacology , Virus Internalization/drug effects , Antiviral Agents/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Infections/metabolism , HIV Infections/virology , Humans , Protein Binding , Protein Conformation , Protein Multimerization , Pyridones/chemistry , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Stereoisomerism , Sulfonamides/chemistry , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL