Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34910928

ABSTRACT

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Subject(s)
Colonic Polyps/pathology , Colorectal Neoplasms/pathology , Tumor Microenvironment , Adaptive Immunity , Adenoma/genetics , Adenoma/pathology , Adult , Aged , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Death , Cell Differentiation , Colonic Polyps/genetics , Colonic Polyps/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Heterogeneity , Humans , Male , Mice , Middle Aged , Mutation/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA-Seq , Reproducibility of Results , Single-Cell Analysis , Tumor Microenvironment/immunology
2.
Cell ; 164(4): 668-80, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26871632

ABSTRACT

Mouse embryonic stem cells (ESCs) are maintained in a naive ground state of pluripotency in the presence of MEK and GSK3 inhibitors. Here, we show that ground-state ESCs express low Myc levels. Deletion of both c-myc and N-myc (dKO) or pharmacological inhibition of Myc activity strongly decreases transcription, splicing, and protein synthesis, leading to proliferation arrest. This process is reversible and occurs without affecting pluripotency, suggesting that Myc-depleted stem cells enter a state of dormancy similar to embryonic diapause. Indeed, c-Myc is depleted in diapaused blastocysts, and the differential expression signatures of dKO ESCs and diapaused epiblasts are remarkably similar. Following Myc inhibition, pre-implantation blastocysts enter biosynthetic dormancy but can progress through their normal developmental program after transfer into pseudo-pregnant recipients. Our study shows that Myc controls the biosynthetic machinery of stem cells without affecting their potency, thus regulating their entry and exit from the dormant state.


Subject(s)
Embryonic Stem Cells/cytology , Genes, myc , Proto-Oncogene Proteins c-myc/genetics , Animals , Blastocyst/metabolism , Cell Proliferation , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Stem Cells/metabolism , Female , Gene Knockout Techniques , Male , Mice , Mice, Inbred C57BL
3.
Genes Dev ; 36(5-6): 348-367, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35241478

ABSTRACT

Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor Eif4a2 and its premature termination codon-encoding isoform (Eif4a2PTC ). NMD deficiency leads to translation of the truncated eIF4A2PTC protein. eIF4A2PTC elicits increased mTORC1 activity and translation rates and causes differentiation delays. This establishes a previously unknown feedback loop between NMD and translation initiation. Furthermore, our results show a clear hierarchy in the severity of target deregulation and differentiation phenotypes between NMD effector KOs (Smg5 KO > Smg6 KO > Smg7 KO), which highlights heterodimer-independent functions for SMG5 and SMG7. Together, our findings expose an intricate link between mRNA homeostasis and mTORC1 activity that must be maintained for normal dynamics of cell state transitions.


Subject(s)
Carrier Proteins , Nonsense Mediated mRNA Decay , Carrier Proteins/genetics , Gene Expression , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism
4.
Cell ; 158(6): 1254-1269, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25215486

ABSTRACT

Current human pluripotent stem cells lack the transcription factor circuitry that governs the ground state of mouse embryonic stem cells (ESC). Here, we report that short-term expression of two components, NANOG and KLF2, is sufficient to ignite other elements of the network and reset the human pluripotent state. Inhibition of ERK and protein kinase C sustains a transgene-independent rewired state. Reset cells self-renew continuously without ERK signaling, are phenotypically stable, and are karyotypically intact. They differentiate in vitro and form teratomas in vivo. Metabolism is reprogrammed with activation of mitochondrial respiration as in ESC. DNA methylation is dramatically reduced and transcriptome state is globally realigned across multiple cell lines. Depletion of ground-state transcription factors, TFCP2L1 or KLF4, has marginal impact on conventional human pluripotent stem cells but collapses the reset state. These findings demonstrate feasibility of installing and propagating functional control circuitry for ground-state pluripotency in human cells.


Subject(s)
Homeodomain Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cytological Techniques , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Humans , Kruppel-Like Factor 4 , Mice , Mitochondria/metabolism , Nanog Homeobox Protein , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Transcriptome
5.
Nature ; 623(7986): 432-441, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914932

ABSTRACT

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Neoplasms , Humans , Cell Hypoxia , Cell Nucleus , Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic/genetics , Epithelial-Mesenchymal Transition , Estrogens/metabolism , Gene Expression Profiling , GTPase-Activating Proteins/metabolism , Neoplasm Metastasis , Neoplasms/classification , Neoplasms/genetics , Neoplasms/pathology , Regulatory Sequences, Nucleic Acid/genetics , Single-Cell Analysis , Transcription Factors/metabolism
6.
Cell ; 153(2): 335-47, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23582324

ABSTRACT

Factors that sustain self-renewal of mouse embryonic stem cells (ESCs) are well described. In contrast, the machinery regulating exit from pluripotency is ill defined. In a large-scale small interfering RNA (siRNA) screen, we found that knockdown of the tumor suppressors Folliculin (Flcn) and Tsc2 prevent ESC commitment. Tsc2 lies upstream of mammalian target of rapamycin (mTOR), whereas Flcn acts downstream and in parallel. Flcn with its interaction partners Fnip1 and Fnip2 drives differentiation by restricting nuclear localization and activity of the bHLH transcription factor Tfe3. Conversely, enforced nuclear Tfe3 enables ESCs to withstand differentiation conditions. Genome-wide location and functional analyses showed that Tfe3 directly integrates into the pluripotency circuitry through transcriptional regulation of Esrrb. These findings identify a cell-intrinsic rheostat for destabilizing ground-state pluripotency to allow lineage commitment. Congruently, stage-specific subcellular relocalization of Tfe3 suggests that Flcn-Fnip1/2 contributes to developmental progression of the pluripotent epiblast in vivo.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Differentiation , Embryonic Stem Cells/cytology , Gene Regulatory Networks , Animals , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/metabolism , Embryonic Stem Cells/metabolism , Estrone/genetics , Estrone/metabolism , Mice , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism
7.
Annu Rev Cell Dev Biol ; 30: 647-75, 2014.
Article in English | MEDLINE | ID: mdl-25288119

ABSTRACT

Mouse embryonic stem (ES) cells perpetuate in vitro the broad developmental potential of naïve founder cells in the preimplantation embryo. ES cells self-renew relentlessly in culture but can reenter embryonic development seamlessly, differentiating on schedule to form all elements of the fetus. Here we review the properties of these remarkable cells. Arising from the stability, homogeneity, and equipotency of ES cells, we consider the concept of a pluripotent ground state. We evaluate the authenticity of ES cells in relation to cells in the embryo and examine their utility for dissecting mechanisms that confer pluripotency and that execute fate choice. We summarize current knowledge of the transcription factor circuitry that governs the ES cell state and discuss the opportunity to expose molecular logic further through iterative computational modeling and experimentation. Finally, we present a perspective on unresolved questions, including the challenge of deriving ground state pluripotent stem cells from non-rodent species.


Subject(s)
Embryonic Stem Cells/cytology , Animals , Asymmetric Cell Division , Blastocyst/cytology , Cell Culture Techniques , Cell Lineage , Cells, Cultured , Cellular Reprogramming , Coculture Techniques , Culture Media , Culture Media, Serum-Free , Embryonal Carcinoma Stem Cells/cytology , Embryonic Stem Cells/physiology , Fibroblasts/cytology , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Reporter , Germ Layers/cytology , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/physiology , Leukemia Inhibitory Factor/physiology , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Transcription Factors/pharmacology , Transcription Factors/physiology
8.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38691188

ABSTRACT

Analysis of single cell transcriptomics (scRNA-seq) data is typically performed after subsetting to highly variable genes (HVGs). Here, we show that Entropy Sorting provides an alternative mathematical framework for feature selection. On synthetic datasets, continuous Entropy Sort Feature Weighting (cESFW) outperforms HVG selection in distinguishing cell-state-specific genes. We apply cESFW to six merged scRNA-seq datasets spanning human early embryo development. Without smoothing or augmenting the raw counts matrices, cESFW generates a high-resolution embedding displaying coherent developmental progression from eight-cell to post-implantation stages and delineating 15 distinct cell states. The embedding highlights sequential lineage decisions during blastocyst development, while unsupervised clustering identifies branch point populations obscured in previous analyses. The first branching region, where morula cells become specified for inner cell mass or trophectoderm, includes cells previously asserted to lack a developmental trajectory. We quantify the relatedness of different pluripotent stem cell cultures to distinct embryo cell types and identify marker genes of naïve and primed pluripotency. Finally, by revealing genes with dynamic lineage-specific expression, we provide markers for staging progression from morula to blastocyst.


Subject(s)
Cell Lineage , Embryo, Mammalian , Embryonic Development , Entropy , Single-Cell Analysis , Transcriptome , Humans , Transcriptome/genetics , Single-Cell Analysis/methods , Embryonic Development/genetics , Embryo, Mammalian/metabolism , Cell Lineage/genetics , Gene Expression Regulation, Developmental , Blastocyst/metabolism , Blastocyst/cytology , Gene Expression Profiling , Morula/metabolism , Morula/cytology , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology
9.
Cell ; 149(3): 590-604, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22541430

ABSTRACT

Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as "2i" postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-treated cells exhibit lower expression of lineage-affiliated genes, reduced prevalence at promoters of the repressive histone modification H3K27me3, and fewer bivalent domains, which are thought to mark genes poised for either up- or downregulation. Nonetheless, serum- and 2i-grown ES cells have similar differentiation potential. Precocious transcription of developmental genes in 2i is restrained by RNA polymerase II promoter-proximal pausing. These findings suggest that transcriptional potentiation and a permissive chromatin context characterize the ground state and that exit from it may not require a metastable intermediate or multilineage priming.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Histone Code , Transcription, Genetic , Animals , Cell Differentiation , Epigenesis, Genetic , Genes, myc , Histones/metabolism , Methylation , Mice , RNA Polymerase II/metabolism , Transcriptome
10.
Development ; 150(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36930528

ABSTRACT

The Company of Biologists' 2022 workshop on 'Cell State Transitions: Approaches, Experimental Systems and Models' brought together an international and interdisciplinary team of investigators spanning the fields of cell and developmental biology, stem cell biology, physics, mathematics and engineering to tackle the question of how cells precisely navigate between distinct identities and do so in a dynamic manner. This second edition of the workshop was organized after a successful virtual workshop on the same topic that took place in 2021.


Subject(s)
Stem Cells , Congresses as Topic , Cell Biology , Developmental Biology
11.
EMBO J ; 40(8): e105776, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33687089

ABSTRACT

In the mammalian embryo, epiblast cells must exit the naïve state and acquire formative pluripotency. This cell state transition is recapitulated by mouse embryonic stem cells (ESCs), which undergo pluripotency progression in defined conditions in vitro. However, our understanding of the molecular cascades and gene networks involved in the exit from naïve pluripotency remains fragmentary. Here, we employed a combination of genetic screens in haploid ESCs, CRISPR/Cas9 gene disruption, large-scale transcriptomics and computational systems biology to delineate the regulatory circuits governing naïve state exit. Transcriptome profiles for 73 ESC lines deficient for regulators of the exit from naïve pluripotency predominantly manifest delays on the trajectory from naïve to formative epiblast. We find that gene networks operative in ESCs are also active during transition from pre- to post-implantation epiblast in utero. We identified 496 naïve state-associated genes tightly connected to the in vivo epiblast state transition and largely conserved in primate embryos. Integrated analysis of mutant transcriptomes revealed funnelling of multiple gene activities into discrete regulatory modules. Finally, we delineate how intersections with signalling pathways direct this pivotal mammalian cell state transition.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , Mouse Embryonic Stem Cells/metabolism , Animals , Cells, Cultured , Gene Expression Regulation, Developmental , Mice , Mouse Embryonic Stem Cells/cytology , Transcriptome
12.
Development ; 149(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36398796

ABSTRACT

Propagation of human naïve pluripotent stem cells (nPSCs) relies on the inhibition of MEK/ERK signalling. However, MEK/ERK inhibition also promotes differentiation into trophectoderm (TE). Therefore, robust self-renewal requires suppression of TE fate. Tankyrase inhibition using XAV939 has been shown to stabilise human nPSCs and is implicated in TE suppression. Here, we dissect the mechanism of this effect. Tankyrase inhibition is known to block canonical Wnt/ß-catenin signalling. However, we show that nPSCs depleted of ß-catenin remain dependent on XAV939. Rather than inhibiting Wnt, we found that XAV939 prevents TE induction by reducing activation of YAP, a co-factor of TE-inducing TEAD transcription factors. Tankyrase inhibition stabilises angiomotin, which limits nuclear accumulation of YAP. Upon deletion of angiomotin-family members AMOT and AMOTL2, nuclear YAP increases and XAV939 fails to prevent TE induction. Expression of constitutively active YAP similarly precipitates TE differentiation. Conversely, nPSCs lacking YAP1 or its paralog TAZ (WWTR1) resist TE differentiation and self-renewal efficiently without XAV939. These findings explain the distinct requirement for tankyrase inhibition in human but not in mouse nPSCs and highlight the pivotal role of YAP activity in human naïve pluripotency and TE differentiation. This article has an associated 'The people behind the papers' interview.


Subject(s)
Angiomotins , Pluripotent Stem Cells , Tankyrases , YAP-Signaling Proteins , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , beta Catenin/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Tankyrases/metabolism , Wnt Signaling Pathway , Pluripotent Stem Cells/cytology
14.
Mol Cell ; 65(6): 975-984.e5, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28306513

ABSTRACT

Tardigrades are microscopic animals that survive a remarkable array of stresses, including desiccation. How tardigrades survive desiccation has remained a mystery for more than 250 years. Trehalose, a disaccharide essential for several organisms to survive drying, is detected at low levels or not at all in some tardigrade species, indicating that tardigrades possess potentially novel mechanisms for surviving desiccation. Here we show that tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation tolerance. TDP genes are constitutively expressed at high levels or induced during desiccation in multiple tardigrade species. TDPs are required for tardigrade desiccation tolerance, and these genes are sufficient to increase desiccation tolerance when expressed in heterologous systems. TDPs form non-crystalline amorphous solids (vitrify) upon desiccation, and this vitrified state mirrors their protective capabilities. Our study identifies TDPs as functional mediators of tardigrade desiccation tolerance, expanding our knowledge of the roles and diversity of disordered proteins involved in stress tolerance.


Subject(s)
Acclimatization , Dehydration/enzymology , Enzymes/metabolism , Intrinsically Disordered Proteins/metabolism , Tardigrada/enzymology , Animals , Dehydration/genetics , Desiccation , Enzyme Stability , Escherichia coli/enzymology , Escherichia coli/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Protein Conformation , RNA Interference , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Tardigrada/genetics , Up-Regulation , Vitrification
15.
EMBO J ; 39(2): e102591, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31782544

ABSTRACT

Developmental cell fate specification is a unidirectional process that can be reverted in response to injury or experimental reprogramming. Whether differentiation and de-differentiation trajectories intersect mechanistically is unclear. Here, we performed comparative screening in lineage-related mouse naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), and identified the constitutively expressed zinc finger transcription factor (TF) Zfp281 as a bidirectional regulator of cell state interconversion. We showed that subtle chromatin binding changes in differentiated cells translate into activation of the histone H3 lysine 9 (H3K9) methyltransferase Ehmt1 and stabilization of the zinc finger TF Zic2 at enhancers and promoters. Genetic gain-of-function and loss-of-function experiments confirmed a critical role of Ehmt1 and Zic2 downstream of Zfp281 both in driving exit from the ESC state and in restricting reprogramming of EpiSCs. Our study reveals that cell type-invariant chromatin association of Zfp281 provides an interaction platform for remodeling the cis-regulatory network underlying cellular plasticity.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Histone-Lysine N-Methyltransferase/metabolism , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Animals , Cells, Cultured , Chromatin/chemistry , Chromatin/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism
16.
Development ; 148(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34932803

ABSTRACT

A fundamental challenge when studying biological systems is the description of cell state dynamics. During transitions between cell states, a multitude of parameters may change - from the promoters that are active, to the RNAs and proteins that are expressed and modified. Cells can also adopt different shapes, alter their motility and change their reliance on cell-cell junctions or adhesion. These parameters are integral to how a cell behaves and collectively define the state a cell is in. Yet, technical challenges prevent us from measuring all of these parameters simultaneously and dynamically. How, then, can we comprehend cell state transitions using finite descriptions? The recent virtual workshop organised by The Company of Biologists entitled 'Cell State Transitions: Approaches, Experimental Systems and Models' attempted to address this question. Here, we summarise some of the main points that emerged during the workshop's themed discussions. We also present examples of cell state transitions and describe models and systems that are pushing forward our understanding of how cells rewire their state.


Subject(s)
Cell Lineage/genetics , Promoter Regions, Genetic/genetics , Proteins/genetics , RNA/genetics , Cell Adhesion/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Intercellular Junctions/genetics , Systems Biology
17.
Development ; 148(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34874452

ABSTRACT

Despite four decades of effort, robust propagation of pluripotent stem cells from livestock animals remains challenging. The requirements for self-renewal are unclear and the relationship of cultured stem cells to pluripotent cells resident in the embryo uncertain. Here, we avoided using feeder cells or serum factors to provide a defined culture microenvironment. We show that the combination of activin A, fibroblast growth factor and the Wnt inhibitor XAV939 (AFX) supports establishment and continuous expansion of pluripotent stem cell lines from porcine, ovine and bovine embryos. Germ layer differentiation was evident in teratomas and readily induced in vitro. Global transcriptome analyses highlighted commonality in transcription factor expression across the three species, while global comparison with porcine embryo stages showed proximity to bilaminar disc epiblast. Clonal genetic manipulation and gene targeting were exemplified in porcine stem cells. We further demonstrated that genetically modified AFX stem cells gave rise to cloned porcine foetuses by nuclear transfer. In summary, for major livestock mammals, pluripotent stem cells related to the formative embryonic disc are reliably established using a common and defined signalling environment. This article has an associated 'The people behind the papers' interview.


Subject(s)
Cell Differentiation , Embryo, Mammalian/metabolism , Germ Layers/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cattle , Embryo, Mammalian/cytology , Germ Layers/cytology , Livestock , Pluripotent Stem Cells/cytology , Sheep , Species Specificity , Swine
18.
Cell ; 138(4): 722-37, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19703398

ABSTRACT

Pluripotency is generated naturally during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Pluripotency can be recreated by somatic cell reprogramming. Here we present evidence that the homeodomain protein Nanog mediates acquisition of both embryonic and induced pluripotency. Production of pluripotent hybrids by cell fusion is promoted by and dependent on Nanog. In transcription factor-induced molecular reprogramming, Nanog is initially dispensable but becomes essential for dedifferentiated intermediates to transit to ground state pluripotency. In the embryo, Nanog specifically demarcates the nascent epiblast, coincident with the domain of X chromosome reprogramming. Without Nanog, pluripotency does not develop, and the inner cell mass is trapped in a pre-pluripotent, indeterminate state that is ultimately nonviable. These findings suggest that Nanog choreographs synthesis of the naive epiblast ground state in the embryo and that this function is recapitulated in the culmination of somatic cell reprogramming.


Subject(s)
Cellular Reprogramming , Homeodomain Proteins/metabolism , Adult Stem Cells/cytology , Animals , Blastocyst/cytology , Cell Dedifferentiation , Embryonic Stem Cells/cytology , Female , Germ Layers/cytology , Homeodomain Proteins/genetics , Mice , Nanog Homeobox Protein , X Chromosome/metabolism
19.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34518230

ABSTRACT

Genome remethylation is essential for mammalian development but specific reasons are unclear. Here we examined embryonic stem (ES) cell fate in the absence of de novo DNA methyltransferases. We observed that ES cells deficient for both Dnmt3a and Dnmt3b are rapidly eliminated from chimeras. On further investigation we found that in vivo and in vitro the formative pluripotency transition is derailed toward production of trophoblast. This aberrant trajectory is associated with failure to suppress activation of Ascl2Ascl2 encodes a bHLH transcription factor expressed in the placenta. Misexpression of Ascl2 in ES cells provokes transdifferentiation to trophoblast-like cells. Conversely, Ascl2 deletion rescues formative transition of Dnmt3a/b mutants and improves contribution to chimeric epiblast. Thus, de novo DNA methylation safeguards against ectopic activation of Ascl2 However, Dnmt3a/b-deficient cells remain defective in ongoing embryogenesis. We surmise that multiple developmental transitions may be secured by DNA methylation silencing potentially disruptive genes.


Subject(s)
DNA Methylation/genetics , Embryonic Stem Cells/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferases/genetics , Embryonic Development/genetics , Mice , Trophoblasts/physiology , DNA Methyltransferase 3B
20.
Article in English | MEDLINE | ID: mdl-38821171

ABSTRACT

BACKGROUND: There is a common concern that range of motion (ROM) is negatively affected by the Latarjet procedure. We hypothesize that the Latarjet procedure results in full recuperation of ROM postoperatively and significantly improved patient reported outcome measures. METHODS: Patient data were prospectively collected from a randomized controlled trial to analyze outcomes after open Latarjet procedure. Inclusion criteria involved a minimum follow-up of six months and unilateral shoulder instability. Study outcome was assessed by postoperative ROM at six months postoperatively and compared to the preoperative ROM of the ipsilateral shoulder as well as the ROM of the unaffected contralateral shoulder. All ROM measurements were performed utilizing a motion capture system to ensure consistent and reliable measurements. RESULTS: The study included a total of 84 patients. ROM was measured in external rotation with the shoulder adducted (ER1), external rotation with the shoulder abducted 90 degrees (ER2), internal rotation with the arm abducted 90 degrees (IR2), and active forward elevation (AE). The average difference in ROM between the operated arm vs. the contralateral healthy arm at six months postoperatively was 3.4 degrees in ER1 (p=0.19), 4.2 degrees in ER2 (p=0.086), 2.2 degrees in IR2 (p=0.36), and 2.4 degrees in AE (p=0.045). Sub-analysis of patients with and without sling use revealed no significant difference in ROM between the operated shoulder and contralateral shoulder at six months in either group, with the exception of ER2 in the sling group. In this latter group, ROM was 71 degrees in the operated arm and 79 degrees in the contralateral arm (p=0.0094). Average preoperative pain score was 25.7 (21.4-30.1, 95%CI) vs. 13.0 postoperatively at six months (9.50-16.5, 95%CI) (p <0.00001). Average preoperative SANE instability was 42.9 (38.4-47.3, 95%CI) vs. 86.2 postoperatively at six months (83.6-88.7, 95%CI) (p <0.00001). Average preoperative Rowe score was 38.5 (34.3-42.7, 95%CI) vs. 84.3 at six postoperative months (81.1-87.4, 95%CI) (p<0.00001). CONCLUSIONS: Latarjet procedure performed for anterior instability utilizing a capsular repair result in complete ROM recovery in ER1, ER2, and IR2 at six months postoperatively, with only a slight discrepancy in active elevation. Sling use after the Latarjet procedure results in no benefit over postoperative recovery without the use of a sling. Sling use negatively affects the ROM in ER2, taking as reference the contralateral arm of the same patient, when compared to patients that did not use a sling postoperatively.

SELECTION OF CITATIONS
SEARCH DETAIL