ABSTRACT
Anergic B cells are characterized by impaired signaling and activation after aggregation of their antigen receptors (BCR). The molecular basis of this impairment is not understood. In studies reported here, Src homology-2 (SH2)-containing inositol 5-phosphatase SHIP-1 and its adaptor Dok-1 were found to be constitutively phosphorylated in anergic B cells, and activation of this inhibitory circuit was dependent on Src-family kinase activity and consequent to biased BCR immunoreceptor tyrosine-based activation motif (ITAM) monophosphorylation. B cell-targeted deletion of SHIP-1 caused severe lupus-like disease. Moreover, absence of SHIP-1 in B cells led to loss of anergy as indicated by restoration of BCR signaling, loss of anergic surface phenotype, and production of autoantibodies. Thus, chronic BCR signals maintain anergy in part via ITAM monophosphorylation-directed activation of an inhibitory signaling circuit involving SHIP-1 and Dok-1.
Subject(s)
B-Lymphocytes/immunology , CD79 Antigens/metabolism , Clonal Anergy/immunology , Phosphoric Monoester Hydrolases/metabolism , Signal Transduction , Amino Acid Motifs , Animals , Autoimmunity/genetics , Autoimmunity/immunology , B-Lymphocytes/metabolism , Cell Line, Tumor , Cells, Cultured , DNA-Binding Proteins/metabolism , Gene Targeting , Inositol Polyphosphate 5-Phosphatases , Mice , Mice, Transgenic , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Phosphoproteins/metabolism , Phosphorylation , RNA-Binding Proteins/metabolism , Tyrosine/metabolism , src-Family Kinases/metabolismABSTRACT
Mesenchymal stem cells (MSC) exert immune modulatory properties and previous studies demonstrated suppressive effects of MSC treatment in animal models of allergic airway inflammation. However, the underlying mechanisms have not been fully elucidated. We studied the role of MSC in immune activation and subsequent recruitment of monocytes in suppressing airway hyperresponsiveness and airway inflammation using a mouse model of allergic airway inflammation. MSC administration prior to or after allergen challenge inhibited the development of airway inflammation in allergen-sensitized mice. This was accompanied by an influx of CCR2-positive monocytes, which were localized around injected MSC in the lungs. Notably, IL-10-producing monocytes and/or macrophages were also increased in the lungs. Systemic administration of liposomal clodronate or a CCR2 antagonist significantly prevented the suppressive effects of MSC. Activation of MSC by IFN-γ leading to the upregulation of CCL2 expression was essential for the suppressive effects, as administration of wild-type MSC into IFN-γ-deficient recipients, or IFN-γ receptor-deficient or CCL2-deficient MSC into wild-type mice failed to suppress airway inflammation. These results suggest that MSC activation by IFN-γ, followed by increased expression of CCL2 and recruitment of monocytes to the lungs, is essential for suppression by MSC in allergen-induced airway hyperresponsiveness and airway inflammation.
Subject(s)
Mesenchymal Stem Cells/immunology , Monocytes/immunology , Receptors, CCR2/immunology , Respiratory Hypersensitivity/immunology , Animals , Cell Movement/immunology , Female , Inflammation/immunology , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Receptors, CCR2/biosynthesis , Respiratory Hypersensitivity/metabolismABSTRACT
AIMS/HYPOTHESIS: Previous studies have demonstrated that high-affinity insulin-binding B cells (IBCs) silenced by anergy in healthy humans lose their anergy in islet autoantibody-positive individuals with recent-onset type 1 diabetes, and in autoantibody-negative first-degree relatives carrying certain risk alleles. Here we explore the hypothesis that IBCs are found in the immune periphery of disease-resistant C57BL/6-H2g7 mice, where, as in healthy humans, they are anergic, but that in disease-prone genetic backgrounds (NOD) they become activated and migrate to the pancreas and pancreatic lymph nodes, where they participate in the development of type 1 diabetes. METHODS: We compared the status of high-affinity IBCs in disease-resistant VH125.C57BL/6-H2g7 and disease-prone VH125.NOD mice. RESULTS: Consistent with findings in healthy humans, high-affinity IBCs reach the periphery in disease-resistant mice and are anergic, as indicated by a reduced expression of membrane IgM, unresponsiveness to antigen and failure to become activated or accumulate in the pancreatic lymph nodes or pancreas. In NOD mice, high-affinity IBCs reach the periphery early in life and increase in number prior to the onset of hyperglycaemia. These cells are not anergic; they become activated, produce autoantibodies and accumulate in the pancreas and pancreatic lymph nodes prior to disease development. CONCLUSIONS/INTERPRETATION: These findings are consistent with genetic determination of the escape of high-affinity IBCs from anergy and their early contribution to the development of type 1 diabetes.
Subject(s)
Autoantibodies/immunology , Autoimmunity/physiology , B-Lymphocytes/metabolism , Animals , Autoantibodies/metabolism , Autoimmunity/immunology , B-Lymphocytes/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NODABSTRACT
Autoimmune thyroid disease (AITD), including Hashimoto's thyroiditis (HT) and Graves' disease (GD), is the most common autoimmune disorder in the United States, affecting over 20 million people. At the time of diagnosis, both HD and GD are characterized by the accumulation of B and T lymphocytes in the thyroid gland and production of autoantibodies targeting the thyroid, indicating that a breach in tolerance of autoreactive lymphocytes has occurred. However, few studies have sought to understand the underlying pathogenesis of AITD that ultimately leads to production of autoantibodies and loss of thyroid function. In this study, we analyzed the phenotype of thyroid antigen-reactive B cells in the peripheral blood of recent onset and long standing AITD patients. We found that in recent onset patients thyroid antigen-reactive B cells in blood no longer appear anergic, rather they express CD86, a marker of activation. This likely reflects activation of these cells leading to their production of autoantibodies. Hence, this study reports the early loss of anergy in thyroid antigen-reactive B cells, an event that contributes to development of AITD.
Subject(s)
B-Lymphocytes/immunology , Graves Disease/immunology , T-Lymphocytes/immunology , Thyroid Gland/immunology , Thyroiditis, Autoimmune/immunology , Autoantibodies/immunology , B7-2 Antigen/metabolism , Cells, Cultured , Clonal Anergy , Epitopes , Female , Humans , Immune Tolerance , Lymphocyte Activation , MaleABSTRACT
B cells play a major role in the pathogenesis of many autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and type I diabetes mellitus, as indicated by the efficacy of B cell-targeted therapies in these diseases. Therapeutic effects of the most commonly used B cell-targeted therapy, anti-CD20 mAb, are contingent upon long-term depletion of peripheral B cells. In this article, we describe an alternative approach involving the targeting of CD79, the transducer subunit of the B cell AgR. Unlike anti-CD20 mAbs, the protective effects of CD79-targeted mAbs do not require cell depletion; rather, they act by inducing an anergic-like state. Thus, we describe a novel B cell-targeted approach predicated on the induction of B cell anergy.
Subject(s)
Autoimmune Diseases/prevention & control , B-Lymphocytes/immunology , CD79 Antigens/immunology , Clonal Anergy/immunology , Animals , Antibodies, Monoclonal/immunology , Autoimmunity/immunology , Female , Lymphocyte Activation/immunology , Lymphocyte Count , Lymphocyte Depletion , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, KnockoutABSTRACT
The majority of the human population becomes infected early in life by the gammaherpesvirus EBV. Some findings suggest that there is an association between EBV infection and the appearance of pathogenic Abs found in lupus. Gammaherpesvirus 68 infection of adult mice (an EBV model) was shown to induce polyclonal B cell activation and hypergammaglobulinemia, as well as increased production of autoantibodies. In this study, we explored the possibility that this breach of tolerance reflects loss of B cell anergy. Our findings show that, although anergic B cells transiently acquire an activated phenotype early during infection, they do not become responsive to autoantigen, as measured by the ability to mobilize Ca2+ following AgR cross-linking or mount Ab responses following immunization. Indeed, naive B cells also acquire an activated phenotype during acute infection but are unable to mount Ab responses to either T cell-dependent or T cell-independent Ags. In acutely infected animals, Ag stimulation leads to upregulation of costimulatory molecules and relocalization of Ag-specific B cells to the B-T cell border; however, these cells do not proliferate or differentiate into Ab-secreting cells. Adoptive-transfer experiments show that the suppressed state is reversible and is dictated by the environment in the infected host. Finally, B cells in infected mice deficient of CD4+ T cells are not suppressed, suggesting a role for CD4+ T cells in enforcing unresponsiveness. Thus, rather than promoting loss of tolerance, gammaherpesvirus 68 infection induces an immunosuppressed state, reminiscent of compensatory anti-inflammatory response syndrome.
Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , B-Lymphocyte Subsets/immunology , Clonal Anergy/immunology , Gammaherpesvirinae/immunology , Herpesviridae Infections/immunology , Immune Tolerance , Acute Disease , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , B-Lymphocyte Subsets/pathology , Clonal Anergy/genetics , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Immune Tolerance/genetics , Immunophenotyping , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, TransgenicABSTRACT
While autoreactive T cells are known to induce ß-cell death in type 1 diabetes (T1D), self-reactive B cells also play an important role in the pathogenesis of T1D. Studies have shown that individuals living with T1D have an increased frequency of self-reactive B cells that escape from the bone marrow and populate peripheral organs, become activated, and participate in disease. These failed tolerance mechanisms may be attributed to genetic risk alleles that are associated with the development of T1D. Once in the periphery, these self-reactive B cells act as important antigen-presenting cells to autoreactive T cells and produce autoantibodies that are used to predict individuals at risk for or diagnosed with T1D. Here, we discuss the evidence that B cells are important in the pathogenesis of T1D, how these cells escape normal tolerance mechanisms, their role in disease progression, and how targeting these cells and/or monitoring them as biomarkers for response to therapy will be of clinical benefit.
ABSTRACT
Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). To better understand their contribution, we performed single cell gene and BCR-seq analysis on pancreatic islet antigen-reactive (IAR) B cells from the peripheral blood of nondiabetic (ND), autoantibody positive prediabetic (AAB), and recent-onset T1D individuals. We found that the frequency of IAR B cells was increased in AAB and T1D. IAR B cells from these donors had altered expression of B cell signaling, pro-inflammatory, infection, and antigen processing and presentation genes. Both AAB and T1D donors demonstrated a significant increase in certain heavy and light chain V genes, and these V genes were enriched in islet-reactivity. Public clones of IAR B cells were restricted almost entirely to AAB and T1D donors. IAR B cells were clonally expanded in the autoimmune donors, particularly the AAB group. Notably, a substantial fraction of IAR B cells in AAB and T1D donors appeared to be polyreactive, which was corroborated by analysis of recombinant monoclonal antibodies. These results expand our understanding of autoreactive B cell activation during T1D and identify unique BCR repertoire changes that may serve as biomarkers for increased disease risk.
ABSTRACT
The COVID-19 pandemic coincided with several transformative advances in single-cell analysis. These new methods along with decades of research and trials with antibody therapeutics and RNA based technologies allowed for highly effective vaccines and treatments to be produced at astonishing speeds. While these tools were initially focused on models of infection, they also show promise in an autoimmune setting. Self-reactive B cells play important roles as antigen-presenting cells and cytokine and autoantibody producers for many autoimmune diseases. Yet, current therapies to target autoreactive B cells deplete all B cells irrespective of their pathogenicity. Development of self-reactive B cell targeting therapies that would spare non-pathogenic B cells are needed to treat disease while allowing effective immune responses to other ailments. Single-cell RNA sequencing (scRNA-seq) approaches will aid in identification of the pathogenic self-reactive B cells operative in autoimmunity and help with development of more favorable precision targeted therapies.
Subject(s)
Autoimmune Diseases , COVID-19 , Humans , Autoimmunity/genetics , Pandemics , COVID-19/therapy , Autoimmune Diseases/genetics , Autoimmune Diseases/therapy , Autoantibodies , Sequence Analysis, RNAABSTRACT
Recent evidence suggests a role for B cells in the pathogenesis of young-onset type 1 diabetes (T1D), wherein rapid progression occurs. However, little is known regarding the specificity, phenotype, and function of B cells in young-onset T1D. We performed a cross-sectional analysis comparing insulin-reactive to tetanus-reactive B cells in the blood of T1D and controls using mass cytometry. Unsupervised clustering revealed the existence of a highly activated B cell subset we term BND2 that falls within the previously defined anergic BND subset. We found a specific increase in the frequency of insulin-reactive BND2 cells in the blood of young-onset T1D donors, which was further enriched in the pancreatic lymph nodes of T1D donors. The frequency of insulin-binding BND2 cells correlated with anti-insulin autoantibody levels. We demonstrate BND2 cells are pre-plasma cells and can likely act as APCs to T cells. These findings identify an antigen-specific B cell subset that may play a role in the rapid progression of young-onset T1D.
Subject(s)
Diabetes Mellitus, Type 1 , Humans , Cross-Sectional Studies , B-Lymphocytes , T-Lymphocytes , InsulinABSTRACT
Introduction: Most childhood-onset SLE patients (cSLE) develop lupus nephritis (cLN), but only a small proportion achieve complete response to current therapies. The prognosis of children with LN and end-stage renal disease is particularly dire. Mortality rates within the first five years of renal replacement therapy may reach 22%. Thus, there is urgent need to decipher and target immune mechanisms that drive cLN. Despite the clear role of autoantibody production in SLE, targeted B cell therapies such as rituximab (anti-CD20) and belimumab (anti-BAFF) have shown only modest efficacy in cLN. While many studies have linked dysregulation of germinal center formation to SLE pathogenesis, other work supports a role for extrafollicular B cell activation in generation of pathogenic antibody secreting cells. However, whether extrafollicular B cell subsets and their T cell collaborators play a role in specific organ involvement in cLN and/or track with disease activity remains unknown. Methods: We analyzed high-dimensional mass cytometry and gene expression data from 24 treatment naïve cSLE patients at the time of diagnosis and longitudinally, applying novel computational tools to identify abnormalities associated with clinical manifestations (cLN) and disease activity (SLEDAI). Results: cSLE patients have an extrafollicular B cell expansion signature, with increased frequency of i) DN2, ii) Bnd2, iii) plasmablasts, and iv) peripheral T helper cells. Most importantly, we discovered that this extrafollicular signature correlates with disease activity in cLN, supporting extrafollicular T/B interactions as a mechanism underlying pediatric renal pathogenesis. Discussion: This study integrates established and emerging themes of extrafollicular B cell involvement in SLE by providing evidence for extrafollicular B and peripheral T helper cell expansion, along with elevated type 1 IFN activation, in a homogeneous cohort of treatment-naïve cSLE patients, a point at which they should display the most extreme state of their immune dysregulation.
Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Child , B-Lymphocytes , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-InducerABSTRACT
Double negative (DN) B cells (CD27-IgD-) comprise a heterogenous population of DN1, DN2, and the recently described DN3 and DN4 subsets. In autoimmune disease, DN2 cells are reported to be precursors to autoreactive antibody secreting cells and expansion of DN2 cells is linked to elevated interferon levels. Severe SARS-CoV-2 infection is characterized by elevated systemic levels of pro-inflammatory cytokines and serum autoantibodies and expansion of the DN2 subset in severe SARS-CoV-2 infection has been reported. However, the activation status, functional capacity and contribution to virally-induced autoantibody production by DN subsets is not established. Here, we validate the finding that severe SARS-CoV-2 infection is associated with a reduction in the frequency of DN1 cells coinciding with an increase in the frequency of DN2 and DN3 cells. We further demonstrate that with severe viral infection DN subsets are at a heightened level of activation, display changes in immunoglobulin class isotype frequency and have functional BCR signaling. Increases in overall systemic inflammation (CRP), as well as specific pro-inflammatory cytokines (TNFα, IL-6, IFNγ, IL-1ß), significantly correlate with the skewing of DN1, DN2 and DN3 subsets during severe SARS-CoV-2 infection. Importantly, the reduction in DN1 cell frequency and expansion of the DN3 population during severe infection significantly correlates with increased levels of serum autoantibodies. Thus, systemic inflammation during SARS-CoV-2 infection drives changes in Double Negative subset frequency, likely impacting their contribution to generation of autoreactive antibodies.
Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Autoantibodies , B-Lymphocytes , Humans , Immunoglobulin D , Immunoglobulin Isotypes , Inflammation , Interferons , Interleukin-6 , SARS-CoV-2ABSTRACT
Severe SARS-CoV-2 infection is associated with strong inflammation and autoantibody production against diverse self-antigens, suggesting a system-wide defect in B cell tolerance. BND cells are a B cell subset in healthy individuals harboring autoreactive but anergic B lymphocytes. In vitro evidence suggests inflammatory stimuli can breach peripheral B cell tolerance in this subset. We asked whether SARS-CoV-2-associated inflammation impairs BND cell peripheral tolerance. To address this, PBMCs and plasma were collected from healthy controls, individuals immunized against SARS-CoV-2, or subjects with convalescent or severe SARS-CoV-2 infection. We demonstrate that BND cells from severely infected individuals are significantly activated, display reduced inhibitory receptor expression, and restored BCR signaling, indicative of a breach in anergy during viral infection, supported by increased levels of autoreactive antibodies. The phenotypic and functional BND cell alterations significantly correlate with increased inflammation in severe SARS-CoV-2 infection. Thus, autoreactive BND cells are released from peripheral tolerance with SARS-CoV-2 infection, likely as a consequence of robust systemic inflammation.
Subject(s)
COVID-19 , Peripheral Tolerance , Antibodies, Viral , B-Lymphocytes , Humans , Inflammation/metabolism , SARS-CoV-2ABSTRACT
Autoimmune thyroid disease (AITD) is caused by aberrant activation of the immune system allowing autoreactive B and T cells to target the thyroid gland leading to disease. Although AITD is more frequently diagnosed in adults, children are also affected but rarely studied. Here, we performed phenotypic and functional characterization of peripheral blood immune cells from pediatric and adult-onset AITD patients and age-matched controls using mass cytometry. Major findings indicate that unlike adult-onset AITD patients, pediatric AITD patients exhibit a decrease in anergic B cells (BND) and DN2 B cells and an increase in immature B cells compared to age-matched controls. These results indicate alterations in peripheral blood immune cells seen in pediatric-onset AITD could lead to rapid progression of disease. Hence, this study demonstrates diversity of AITD by showing differences in immune cell phenotypes and function based on age of onset, and may inform future therapies.
ABSTRACT
Over the years, various techniques have been utilized to study the function and phenotype of antigen-binding B cells in the primary repertoire following immunization, infection, and development of autoimmunity. Due to the low frequency of antigen-reactive B cells (<0.05% of lymphocytes) in the periphery, preliminary enrichment of cells is necessary to achieve sufficient numbers for statistically sound characterization, especially when downstream analytic platform use, e.g., CyTOF, is low throughput. We previously described a method to detect and enrich antigen-reactive B cells from peripheral blood and tissues using biotinylated antigens in conjunction with magnetic nanoparticles, preparative to a downstream analysis by ELISPOT and flow cytometry. While mass cytometry (CyTOF) enables high dimensional immunophenotyping of over 40 unique parameters on a single-cell level, its low throughput compared to flow cytometry and requirement for removal of metal contaminants, such as nanoparticles, made it particularly unsuitable for studies of rare cells in a mixed population. Here we describe a novel CyTOF-compatible approach for multiplexed enrichment of antigen-reactive B cells, e.g., insulin and tetanus toxoid, using cleavable magnetic nanoparticles. This method allows improved monitoring of the phenotype and function of antigen-reactive B cells during the development of disease or after immunization while minimizing the amount of sample and run times needed.
ABSTRACT
B lymphocytes play critical roles in the development of autoimmunity, acting as autoantibody manufacturers, antigen-presenting cells, and producers of cytokines. Pan-B cell depletion has demonstrated efficacy in treatment of many autoimmune disorders, but carries with it an unfavorable safety profile due to global immune suppression. Hence, attention has turned to the potential of autoantigen-specific B cell targeted therapies, which would deplete or silence pathogenic self-antigen-reactive cells while sparing B cells needed for immune defense. Here, we discuss the antigen-specific B cell-targeted approaches that are under development or are under consideration, that could be employed to allow for more precise therapy in the treatment of autoimmunity. Lastly, we discuss some of the challenges associated with antigen-specific B cell targeting that may impact their clinical applicability.
ABSTRACT
PURPOSE OF REVIEW: Although type 1 diabetes (T1D) is characterized by destruction of the pancreatic beta cells by self-reactive T cells, it has become increasingly evident that B cells also play a major role in disease development, likely functioning as antigen-presenting cells. Here we review the biology of islet antigen-reactive B cells and their participation in autoimmune diabetes. RECENT FINDINGS: Relative to late onset, individuals who develop T1D at an early age display increased accumulation of insulin-reactive B cells in islets. This B-cell signature is also associated with rapid progression of disease and responsiveness to B-cell depletion therapy. Also suggestive of B-cell participation in disease is loss of anergy in high-affinity insulin-reactive B cells. Importantly, loss of anergy is seen in patient's healthy first-degree relatives carrying certain T1D risk alleles, suggesting a role early in disease development. SUMMARY: Recent studies indicate that islet-reactive B cells may play a pathogenic role very early in T1D development in young patients, and suggest utility of therapies that target these cells.
Subject(s)
B-Lymphocytes/physiology , Diabetes Mellitus, Type 1/immunology , Insulin-Secreting Cells/immunology , Islets of Langerhans/immunology , Age of Onset , Animals , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/pathology , Humans , Insulin/immunology , T-Lymphocytes/physiology , Time FactorsABSTRACT
It has been reported that 2.5%-30% of human peripheral CD27- B cells are autoreactive and anergic based on unresponsiveness to antigen receptor (BCR) stimulation and autoreactivity of cloned and expressed BCR. The molecular mechanisms that maintain this unresponsiveness are unknown. Here, we showed that in humans anergy is maintained by elevated expression of PTEN, a phosphatidylinositol 3,4,5P-3-phosphatase. Upregulation of PTEN was associated with reduced expression of microRNAs that control its expression. Pharmacologic inhibition of PTEN lead to significant restoration of responsiveness. Consistent with a role in conferring risk of autoimmunity, B cells from type 1 diabetics and autoimmune thyroid disease patients expressed reduced PTEN. Unexpectedly, in healthy individuals PTEN expression was elevated in on average 40% of CD27- B cells, with levels gradually decreasing as IgM levels increase. Our findings suggest that a much higher proportion of the peripheral repertoire is autoreactive than previously thought and that B cells upregulate PTEN in a manner that is proportional to the recognition of autoantigens of increasing avidity, thus tuning BCR signaling to prevent development of autoimmunity while providing a reservoir of cells that can be readily activated to respond when needed.
ABSTRACT
Although B cells reactive with islet autoantigens are silenced by tolerance mechanisms in healthy individuals, they can become activated and contribute to the development of type 1 diabetes. We previously demonstrated that high-affinity insulin-binding B cells (IBCs) occur exclusively in the anergic (BND) compartment in peripheral blood of healthy subjects. Consistent with their activation early in disease development, high-affinity IBCs are absent from the BND compartment of some first-degree relatives (FDRs) as well as all patients with autoantibody-positive prediabetes and new-onset type 1 diabetes, a time when they are found in pancreatic islets. Loss of BND IBCs is associated with a loss of the entire BND B-cell compartment consistent with provocation by an environmental trigger or predisposing genetic factors. To investigate potential mechanisms operative in subversion of B-cell tolerance, we explored associations between HLA and non-HLA type 1 diabetes-associated risk allele genotypes and loss of BNDs in FDRs. We found that high-risk HLA alleles and a subset of non-HLA risk alleles (i.e., PTPN2 [rs1893217], INS [rs689], and IKZF3 [rs2872507]), relevant to B- and T-cell development and function are associated with loss of anergy. Hence, the results suggest a role for risk-conferring alleles in perturbation of B-cell anergy during development of type 1 diabetes.
Subject(s)
Autoantibodies/immunology , B-Lymphocytes/immunology , Clonal Anergy/immunology , Diabetes Mellitus, Type 1/immunology , Prediabetic State/immunology , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Humans , Ikaros Transcription Factor/genetics , Insulin/genetics , Islets of Langerhans , Prediabetic State/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 2/geneticsABSTRACT
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that affects an estimated 30 million people worldwide. It is characterized by the destruction of pancreatic ß cells by the immune system, which leads to lifelong dependency on exogenous insulin and imposes an enormous burden on patients and health-care resources. T1DM is also associated with an increased risk of comorbidities, such as cardiovascular disease, retinopathy, and diabetic kidney disease (DKD), further contributing to the burden of this disease. Although T cells are largely considered to be responsible for ß-cell destruction in T1DM, increasing evidence points towards a role for B cells in disease pathogenesis. B cell-depletion, for example, delays disease progression in patients with newly diagnosed T1DM. Loss of tolerance of islet antigen-reactive B cells occurs early in disease and numbers of pancreatic CD20+ B cells correlate with ß-cell loss. Although the importance of B cells in T1DM is increasingly apparent, exactly how these cells contribute to disease and its comorbidities, such as DKD, is not well understood. Here we discuss the role of B cells in the pathogenesis of T1DM and how these cells are activated during disease development. Finally, we speculate on how B cells might contribute to the development of DKD.