Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Genet ; 141(2): 257-272, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34907471

ABSTRACT

Bain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype-phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , Mutation , Neurodevelopmental Disorders/genetics , Adolescent , Alternative Splicing/genetics , Amino Acid Substitution , Brain/diagnostic imaging , Child , Child, Preschool , Chromosomes, Human, X/genetics , Codon, Nonsense , Diseases in Twins/diagnostic imaging , Diseases in Twins/genetics , Female , Frameshift Mutation , Genetic Association Studies , Genetic Variation , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/genetics , Male , Mutation, Missense , Neurodevelopmental Disorders/diagnostic imaging , Phenotype , RNA-Seq , Twins, Monozygotic , Young Adult
2.
Genet Med ; 23(4): 740-750, 2021 04.
Article in English | MEDLINE | ID: mdl-33239752

ABSTRACT

PURPOSE: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). METHODS: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. RESULTS: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients' fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. CONCLUSION: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts.


Subject(s)
Aldehyde Oxidoreductases/genetics , Ethers , Lipids , Spastic Paraplegia, Hereditary/genetics , Humans , Phenotype
3.
Genet Med ; 22(5): 878-888, 2020 05.
Article in English | MEDLINE | ID: mdl-31949314

ABSTRACT

PURPOSE: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND). METHODS: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex. RESULTS: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners. CONCLUSIONS: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.


Subject(s)
Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Child , Female , GATA Transcription Factors/genetics , Humans , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Nucleosomes , Phenotype , Pregnancy , Repressor Proteins
5.
Hum Genet ; 137(5): 375-388, 2018 May.
Article in English | MEDLINE | ID: mdl-29740699

ABSTRACT

Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.


Subject(s)
Amino Acid Sequence , Mediator Complex/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Sequence Deletion , Adult , Child , Child, Preschool , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Female , Humans , Male , Mediator Complex/metabolism , Neurodevelopmental Disorders/metabolism , Transcription Initiation, Genetic , Ubiquitination/genetics , United Kingdom
6.
Am J Hum Genet ; 97(6): 922-32, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26637982

ABSTRACT

We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.


Subject(s)
Developmental Disabilities/genetics , Histone Acetyltransferases/genetics , Intellectual Disability/genetics , Neurodegenerative Diseases/genetics , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Adolescent , Animals , Child , Child, Preschool , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Disease Models, Animal , E-Box Elements , Facies , Family , Gene Expression Regulation , Histone Acetyltransferases/metabolism , Humans , Infant , Inheritance Patterns , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Mutation , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Pedigree , Phenotype , Signal Transduction , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/metabolism , Young Adult , Zebrafish
7.
Am J Med Genet A ; 176(8): 1711-1722, 2018 08.
Article in English | MEDLINE | ID: mdl-30055033

ABSTRACT

Multifocal atrial tachycardia (MAT) has a well-known association with Costello syndrome, but is rarely described with related RAS/MAPK pathway disorders (RASopathies). We report 11 patients with RASopathies (Costello, Noonan, and Noonan syndrome with multiple lentigines [formerly LEOPARD syndrome]) and nonreentrant atrial tachycardias (MAT and ectopic atrial tachycardia) demonstrating overlap in cardiac arrhythmia phenotype. Similar overlap is seen in RASopathies with respect to skeletal, musculoskeletal and cutaneous abnormalities, dysmorphic facial features, and neurodevelopmental deficits. Nonreentrant atrial tachycardias may cause cardiac compromise if sinus rhythm is not restored expeditiously. Typical first-line supraventricular tachycardia anti-arrhythmics (propranolol and digoxin) were generally not effective in restoring or maintaining sinus rhythm in this cohort, while flecainide or amiodarone alone or in concert with propranolol were effective anti-arrhythmic agents for acute and chronic use. Atrial tachycardia resolved in all patients. However, a 4-month-old boy from the cohort was found asystolic (with concurrent cellulitis) and a second patient underwent cardiac transplant for heart failure complicated by recalcitrant atrial arrhythmia. While propranolol alone frequently failed to convert or maintain sinus rhythm, fleccainide or amiodarone, occasionally in combination with propranolol, was effective for RASopathy patient treatment for nonreentrant atrial arrhythmia. Our analysis shows that RASopathy patients may have nonreentrant atrial tachycardia with and without associated cardiac hypertrophy. While nonreentrant arrhythmia has been traditionally associated with Costello syndrome, this work provides an expanded view of RASopathy cardiac arrhythmia phenotype as we demonstrate mutant proteins throughout this signaling pathway can also give rise to ectopic and/or MAT.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Costello Syndrome/genetics , Noonan Syndrome/genetics , Tachycardia, Ectopic Atrial/genetics , ras Proteins/genetics , Amiodarone/therapeutic use , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Calcium/metabolism , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/physiopathology , Costello Syndrome/drug therapy , Costello Syndrome/physiopathology , Digoxin/therapeutic use , Female , Humans , Infant , Infant, Newborn , LEOPARD Syndrome/genetics , LEOPARD Syndrome/physiopathology , Male , Noonan Syndrome/drug therapy , Noonan Syndrome/physiopathology , Propranolol/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , SOS1 Protein/genetics , Tachycardia, Ectopic Atrial/drug therapy , Tachycardia, Ectopic Atrial/physiopathology , ras Proteins/classification
9.
Hum Mol Genet ; 22(1): 1-17, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22949511

ABSTRACT

Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.


Subject(s)
Arthrogryposis/genetics , Collagen Type I/metabolism , Genes, Recessive , Lysine/metabolism , Mutation , Osteogenesis Imperfecta/genetics , Tacrolimus Binding Proteins/genetics , Female , Humans , Hydroxylation , Male , Protein Processing, Post-Translational
10.
N Engl J Med ; 367(14): 1321-31, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-22970919

ABSTRACT

BACKGROUND: Some copy-number variants are associated with genomic disorders with extreme phenotypic heterogeneity. The cause of this variation is unknown, which presents challenges in genetic diagnosis, counseling, and management. METHODS: We analyzed the genomes of 2312 children known to carry a copy-number variant associated with intellectual disability and congenital abnormalities, using array comparative genomic hybridization. RESULTS: Among the affected children, 10.1% carried a second large copy-number variant in addition to the primary genetic lesion. We identified seven genomic disorders, each defined by a specific copy-number variant, in which the affected children were more likely to carry multiple copy-number variants than were controls. We found that syndromic disorders could be distinguished from those with extreme phenotypic heterogeneity on the basis of the total number of copy-number variants and whether the variants are inherited or de novo. Children who carried two large copy-number variants of unknown clinical significance were eight times as likely to have developmental delay as were controls (odds ratio, 8.16; 95% confidence interval, 5.33 to 13.07; P=2.11×10(-38)). Among affected children, inherited copy-number variants tended to co-occur with a second-site large copy-number variant (Spearman correlation coefficient, 0.66; P<0.001). Boys were more likely than girls to have disorders of phenotypic heterogeneity (P<0.001), and mothers were more likely than fathers to transmit second-site copy-number variants to their offspring (P=0.02). CONCLUSIONS: Multiple, large copy-number variants, including those of unknown pathogenic significance, compound to result in a severe clinical presentation, and secondary copy-number variants are preferentially transmitted from maternal carriers. (Funded by the Simons Foundation Autism Research Initiative and the National Institutes of Health.).


Subject(s)
Congenital Abnormalities/genetics , DNA Copy Number Variations , Developmental Disabilities/genetics , Genetic Heterogeneity , Intellectual Disability/genetics , Phenotype , Autistic Disorder/genetics , Child , Comparative Genomic Hybridization , Female , Genome, Human , Humans , Male , Oligonucleotide Array Sequence Analysis , Sex Factors
11.
Am J Med Genet A ; 164A(7): 1795-801, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24700761

ABSTRACT

Duplications involving terminal Xq28 are a known cause of intellectual disability (ID) in males and in females with unfavorable X-inactivation patterns. Within Xq28, functional disomy of MECP2 causes a severe ID syndrome, however the dosage sensitivity of other Xq28 duplicated genes is less certain. Duplications involving the int22h-1/int22h-2 LCR-flanked region in distal Xq28 have recently been linked to a novel ID-associated phenotype. While evidence for the dosage sensitivity of this region is emerging, the phenotypic contribution of individual genes within the int22h-1/int22h-2-flanked region has yet to be determined. We report a familial case of a novel 774 kb Xq28-qter duplication, detected by cytogenomic microarray analysis, that partially overlaps the int22h-1/int22h-2-flanked region. This duplication and a 570 kb Xpter-p22.33 loss within the pseudoautosomal region were identified in three siblings, one female and two males, who presented with developmental delays/intellectual disability, mild dysmorphic features and short stature. Although unconfirmed, these results are suggestive of maternal inheritance of a recombinant X. We compare our clinical findings to patients with int22h-1/int22h-2-mediated duplications and discuss the potential pathogenicity of genes within the duplicated region, including those within the shared region of overlap, RAB39B and CLIC2.


Subject(s)
Chloride Channels/genetics , Chromosome Duplication , Chromosomes, Human, X , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , rab GTP-Binding Proteins/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Female , Genetic Association Studies , Humans , In Situ Hybridization, Fluorescence , Infant , Pedigree , Siblings
12.
Am J Med Genet A ; 161A(4): 717-31, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23495017

ABSTRACT

Deletions at 2p16.3 involving exons of NRXN1 are associated with susceptibility for autism and schizophrenia, and similar deletions have been identified in individuals with developmental delay and dysmorphic features. We have identified 34 probands with exonic NRXN1 deletions following referral for clinical microarray-based comparative genomic hybridization. To more firmly establish the full phenotypic spectrum associated with exonic NRXN1 deletions, we report the clinical features of 27 individuals with NRXN1 deletions, who represent 23 of these 34 families. The frequency of exonic NRXN1 deletions among our postnatally diagnosed patients (0.11%) is significantly higher than the frequency among reported controls (0.02%; P = 6.08 × 10(-7) ), supporting a role for these deletions in the development of abnormal phenotypes. Generally, most individuals with NRXN1 exonic deletions have developmental delay (particularly speech), abnormal behaviors, and mild dysmorphic features. In our cohort, autism spectrum disorders were diagnosed in 43% (10/23), and 16% (4/25) had epilepsy. The presence of NRXN1 deletions in normal parents and siblings suggests reduced penetrance and/or variable expressivity, which may be influenced by genetic, environmental, and/or stochastic factors. The pathogenicity of these deletions may also be affected by the location of the deletion within the gene. Counseling should appropriately represent this spectrum of possibilities when discussing recurrence risks or expectations for a child found to have a deletion in NRXN1.


Subject(s)
Cell Adhesion Molecules, Neuronal/genetics , Gene Deletion , Nerve Tissue Proteins/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Adolescent , Adult , Autistic Disorder/genetics , Calcium-Binding Proteins , Child , Child, Preschool , Comparative Genomic Hybridization , Developmental Disabilities/genetics , Exons , Facies , Female , Gene-Environment Interaction , Genome-Wide Association Study , Humans , Infant , Intellectual Disability/genetics , Male , Middle Aged , Neural Cell Adhesion Molecules , Penetrance , Phenotype , Schizophrenia/genetics , Young Adult
13.
J Med Genet ; 49(2): 110-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22180641

ABSTRACT

BACKGROUND: Chromosome 15q24 microdeletion syndrome is a rare genomic disorder characterised by intellectual disability, growth retardation, unusual facial morphology and other anomalies. To date, 20 patients have been reported; 18 have had detailed breakpoint analysis. AIM: To further delineate the features of the 15q24 microdeletion syndrome, the clinical and molecular characterisation of fifteen patients with deletions in the 15q24 region was performed, nearly doubling the number of reported patients. METHODS: Breakpoints were characterised using a custom, high-density array comparative hybridisation platform, and detailed phenotype information was collected for each patient. RESULTS: Nine distinct deletions with different breakpoints ranging in size from 266 kb to 3.75 Mb were identified. The majority of breakpoints lie within segmental duplication (SD) blocks. Low sequence identity and large intervals of unique sequence between SD blocks likely contribute to the rarity of 15q24 deletions, which occur 8-10 times less frequently than 1q21 or 15q13 microdeletions in our series. Two small, atypical deletions were identified within the region that help delineate the critical region for the core phenotype in the 15q24 microdeletion syndrome. CONCLUSION: The molecular characterisation of these patients suggests that the core cognitive features of the 15q24 microdeletion syndrome, including developmental delays and severe speech problems, are largely due to deletion of genes in a 1.1-Mb critical region. However, genes just distal to the critical region also play an important role in cognition and in the development of characteristic facial features associated with 15q24 deletions. Clearly, deletions in the 15q24 region are variable in size and extent. Knowledge of the breakpoints and size of deletion combined with the natural history and medical problems of our patients provide insights that will inform management guidelines. Based on common phenotypic features, all patients with 15q24 microdeletions should receive a thorough neurodevelopmental evaluation, physical, occupational and speech therapies, and regular audiologic and ophthalmologic screening.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 15 , Developmental Disabilities/genetics , Abnormalities, Multiple/diagnosis , Base Sequence , Chromosome Breakpoints , Comparative Genomic Hybridization , Developmental Disabilities/diagnosis , Facies , Female , Genetic Association Studies , Humans , Male , Molecular Sequence Data , Segmental Duplications, Genomic , Syndrome
14.
J Clin Ultrasound ; 41(7): 434-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23744515

ABSTRACT

MECP2 triplication syndrome is a rare and usually lethal genetic disorder characterized by progressive neurologic and cognitive regression. None of the four reported cases describe prenatal sonographic features of affected offspring. We report a second-trimester fetus with marked prefrontal and prenasal skin thickening, retrognathia, and later, third-trimester mild cerebral ventriculomegaly. Amniocyte karyotype was normal male, but newborn whole-genome oligonucleotide microarray showed duplication and triplication of chromosome Xq28 containing the MECP2 gene. Comparative genomic hybridization may be diagnostic in fetuses with prefrontal and prenasal skin thickening, additional sonographic findings, and normal karyotype.


Subject(s)
Mental Retardation, X-Linked/diagnostic imaging , Pregnancy Trimester, Second , Skin Abnormalities/diagnostic imaging , Ultrasonography, Prenatal , Fatal Outcome , Female , Genetic Testing , Humans , Infant, Newborn , Male , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Oligonucleotide Array Sequence Analysis , Pregnancy , Skin Abnormalities/genetics
15.
Sci Adv ; 9(17): eade0631, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37126546

ABSTRACT

We report 21 families displaying neurodevelopmental differences and multiple congenital anomalies while bearing a series of rare variants in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4). MAP4K4 has been implicated in many signaling pathways including c-Jun N-terminal and RAS kinases and is currently under investigation as a druggable target for multiple disorders. Using several zebrafish models, we demonstrate that these human variants are either loss-of-function or dominant-negative alleles and show that decreasing Map4k4 activity causes developmental defects. Furthermore, MAP4K4 can restrain hyperactive RAS signaling in early embryonic stages. Together, our data demonstrate that MAP4K4 negatively regulates RAS signaling in the early embryo and that variants identified in affected humans abrogate its function, establishing MAP4K4 as a causal locus for individuals with syndromic neurodevelopmental differences.


Subject(s)
Signal Transduction , Zebrafish , Animals , Humans , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins
16.
Am J Med Genet A ; 158A(9): 2139-51, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22847869

ABSTRACT

Chromosome 4q deletion syndrome (4q- syndrome) is a rare condition, with an estimated incidence of 1 in 100,000. Although variable, the clinical spectrum commonly includes craniofacial, developmental, digital, skeletal, and cardiac involvement. Data on the genotype-phenotype correlation within the 4q arm are limited. We present detailed clinical and genetic information by array CGH on 20 patients with 4q deletions. We identified a patient who has a ∼465 kb deletion (186,770,069-187,234,800, hg18 coordinates) in 4q35.1 with all clinical features for 4q deletion syndrome except for developmental delay, suggesting that this is a critical region for this condition and a specific gene responsible for orofacial clefts and congenital heart defects resides in this region. Since the patients with terminal deletions all had cleft palate, our results provide further evidence that a gene associated with clefts is located on the terminal segment of 4q. By comparing and contrasting our patients' genetic information and clinical features, we found significant genotype-phenotype correlations at a single gene level linking specific phenotypes to individual genes. Based on these data, we constructed a hypothetical partial phenotype-genotype map for chromosome 4q which includes BMP3, SEC31A, MAPK10, SPARCL1, DMP1, IBSP, PKD2, GRID2, PITX2, NEUROG2, ANK2, FGF2, HAND2, and DUX4 genes.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 4 , Comparative Genomic Hybridization , Female , Genotype , Humans , In Situ Hybridization, Fluorescence , Infant , Phenotype , Syndrome
17.
J Clin Ultrasound ; 40(1): 26-30, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22102396

ABSTRACT

PURPOSE: To evaluate stepwise sequential screening (SSS) efficiency in clinical practice. METHODS: All singletons undergoing SSS in a single practice by NTQR (Nuchal Translucency Quality Review Program)-credentialed providers in a 2-year period were included. Prenatal diagnosis was offered to all screen-positive women and those with a nuchal translucency ≥3.5 mm or cystic hygroma at the 11- to 14-week scan. Data were extracted from prospectively ascertained serum screening and genetics databases. RESULTS: A total of 2,726 patients were screened, with SSS detecting all eight cases of trisomy 21 and all seven cases of other aneuploidies at a 4.3% screen-positive rate. CONCLUSIONS: Stepwise sequential screening offers excellent aneuploidy screening efficiency when introduced into clinical practice.


Subject(s)
Algorithms , Aneuploidy , Chromosome Disorders/diagnosis , Prenatal Diagnosis/methods , Adult , Amniocentesis , Biomarkers/blood , Chorionic Villi Sampling , Down Syndrome/diagnosis , Female , Genetic Counseling , Humans , Nuchal Translucency Measurement , Pregnancy , Pregnancy Proteins/blood , Retrospective Studies
18.
Am J Hum Genet ; 82(5): 1171-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18423521

ABSTRACT

Branchio-oculo-facial syndrome (BOFS) is a rare autosomal-dominant cleft palate-craniofacial disorder with variable expressivity. The major features include cutaneous anomalies (cervical, infra- and/or supra-auricular defects, often with dermal thymus), ocular anomalies, characteristic facial appearance (malformed pinnae, oral clefts), and, less commonly, renal and ectodermal (dental and hair) anomalies. The molecular basis for this disorder is heretofore unknown. We detected a 3.2 Mb deletion by 500K SNP microarray in an affected mother and son with BOFS at chromosome 6p24.3. Candidate genes in this region were selected for sequencing on the basis of their expression patterns and involvement in developmental pathways associated with the clinical findings of BOFS. Four additional BOFS patients were found to have de novo missense mutations in the highly conserved exons 4 and 5 (basic region of the DNA binding domain) of the TFAP2A gene in the candidate deleted region. We conclude BOFS is caused by mutations involving TFAP2A. More patients need to be studied to determine possible genetic heterogeneity and to establish whether there are genotype-phenotype correlations.


Subject(s)
Abnormalities, Multiple/genetics , Branchio-Oto-Renal Syndrome/genetics , Transcription Factor AP-2/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosomes, Human, Pair 6/genetics , Female , Genetic Linkage , Humans , Male , Mutation
19.
Am J Med Genet A ; 155A(1): 22-32, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21204207

ABSTRACT

Branchio-oculo-facial syndrome (BOFS; OMIM#113620) is a rare autosomal dominant craniofacial disorder with variable expression. Major features include cutaneous and ocular abnormalities, characteristic facies, renal, ectodermal, and temporal bone anomalies. Having determined that mutations involving TFAP2A result in BOFS, we studied a total of 30 families (41 affected individuals); 26/30 (87%) fulfilled our cardinal diagnostic criteria. The original family with the 3.2 Mb deletion including the TFAP2A gene remains the only BOFS family without the typical CL/P and the only family with a deletion. We have identified a hotspot region in the highly conserved exons 4 and 5 of TFAP2A that harbors missense mutations in 27/30 (90%) families. Several of these mutations are recurrent. Mosaicism was detected in one family. To date, genetic heterogeneity has not been observed. Although the cardinal criteria for BOFS have been based on the presence of each of the core defects, an affected family member or thymic remnant, we documented TFAP2A mutations in three (10%) probands in our series without a classic cervical cutaneous defect or ectopic thymus. Temporal bone anomalies were identified in 3/5 patients investigated. The occurrence of CL/P, premature graying, coloboma, heterochromia irides, and ectopic thymus, are evidence for BOFS as a neurocristopathy. Intrafamilial clinical variability can be marked. Although there does not appear to be mutation-specific genotype-phenotype correlations at this time, more patients need to be studied. Clinical testing for TFAP2A mutations is now available and will assist geneticists in confirming the typical cases or excluding the diagnosis in atypical cases.


Subject(s)
Branchio-Oto-Renal Syndrome/genetics , Branchio-Oto-Renal Syndrome/pathology , Chromosomes, Human, Pair 6/genetics , Phenotype , Transcription Factor AP-2/genetics , Amino Acid Sequence , Base Sequence , Chromosome Deletion , Genotype , Humans , Molecular Sequence Data , Mutation, Missense/genetics , Sequence Analysis, DNA
20.
J Clin Ultrasound ; 39(8): 480-3, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21882205

ABSTRACT

Dyssegmental dysplasia is a rare, lethal, autosomal-recessive disorder characterized by severe camptomicromelia and anisospondyly. We describe the prenatal sonographic findings in an index case of the Rolland-Desbuquois type, with the diagnosis made by neonatal skeletal survey. Recognition of the unique vertebral disorganization may be used to prenatally distinguish dyssegmental dysplasia from other severe short-limbed conditions.


Subject(s)
Achondroplasia/diagnostic imaging , Campomelic Dysplasia/diagnostic imaging , Cleft Palate/diagnostic imaging , Ultrasonography, Prenatal , Diagnosis, Differential , Female , Humans , Pregnancy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL