Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(42): e2306990120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37831741

ABSTRACT

Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.


Subject(s)
Brain Mapping , Cerebral Cortical Thinning , Adolescent , Humans , Neural Pathways/physiology , Magnetic Resonance Imaging , Functional Laterality/physiology , Receptors, Neurotransmitter , Brain/physiology
2.
Mol Psychiatry ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956372

ABSTRACT

Perseverative negative thoughts, known as rumination, might arise from emotional challenges and preclude mental health when transitioning into adulthood. Due to its multifaceted nature, rumination can take several ruminative response styles, that diverge in manifestations, severity, and mental health outcomes. Still, prospective ruminative phenotypes remain elusive insofar. Longitudinal study designs are ideal for stratifying ruminative response styles, especially with resting-state functional MRI whose setup naturally elicits people's ruminative traits. Here, we considered self-rated questionnaires on rumination and psychopathology, along with resting-state functional MRI data in 595 individuals assessed at age 18 and 22 from the IMAGEN cohort. We conducted independent component analysis to characterize eight single static resting-state functional networks in each subject and session and furthermore conducted a dynamic analysis, tackling the time variations of functional networks during the entire scanning time. We then investigated their longitudinal mediation role between changes in three ruminative response styles (reflective pondering, brooding, and depressive rumination) and changes in internalizing and co-morbid externalizing symptoms. Four static and two dynamic networks longitudinally differentiated these ruminative styles and showed complemental sensitivity to internalizing and co-morbid externalizing symptoms. Among these networks, the right frontoparietal network covaried with all ruminative styles but did not play any mediation role towards psychopathology. The default mode, the salience, and the limbic networks prospectively stratified these ruminative styles, suggesting that maladaptive ruminative styles are associated with altered corticolimbic function. For static measures, only the salience network played a longitudinal causal role between brooding rumination and internalizing symptoms. Dynamic measures highlighted the default-mode mediation role between the other ruminative styles and co-morbid externalizing symptoms. In conclusion, we identified the ruminative styles' psychometric and neural outcome specificities, supporting their translation into applied research on young adult mental healthcare.

3.
PLoS Comput Biol ; 20(7): e1012228, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968304

ABSTRACT

In cognitive neuroscience and psychology, reaction times are an important behavioral measure. However, in instrumental learning and goal-directed decision making experiments, findings often rely only on choice probabilities from a value-based model, instead of reaction times. Recent advancements have shown that it is possible to connect value-based decision models with reaction time models. However, typically these models do not provide an integrated account of both value-based choices and reaction times, but simply link two types of models. Here, we propose a novel integrative joint model of both choices and reaction times by combining a computational account of Bayesian sequential decision making with a sampling procedure. This allows us to describe how internal uncertainty in the planning process shapes reaction time distributions. Specifically, we use a recent context-specific Bayesian forward planning model which we extend by a Markov chain Monte Carlo (MCMC) sampler to obtain both choices and reaction times. As we will show this makes the sampler an integral part of the decision making process and enables us to reproduce, using simulations, well-known experimental findings in value based-decision making as well as classical inhibition and switching tasks. Specifically, we use the proposed model to explain both choice behavior and reaction times in instrumental learning and automatized behavior, in the Eriksen flanker task and in task switching. These findings show that the proposed joint behavioral model may describe common underlying processes in these different decision making paradigms.

4.
Hum Brain Mapp ; 45(3): e26574, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38401132

ABSTRACT

Adolescent subcortical structural brain development might underlie psychopathological symptoms, which often emerge in adolescence. At the same time, sex differences exist in psychopathology, which might be mirrored in underlying sex differences in structural development. However, previous studies showed inconsistencies in subcortical trajectories and potential sex differences. Therefore, we aimed to investigate the subcortical structural trajectories and their sex differences across adolescence using for the first time a single cohort design, the same quality control procedure, software, and a general additive mixed modeling approach. We investigated two large European sites from ages 14 to 24 with 503 participants and 1408 total scans from France and Germany as part of the IMAGEN project including four waves of data acquisition. We found significantly larger volumes in males versus females in both sites and across all seven subcortical regions. Sex differences in age-related trajectories were observed across all regions in both sites. Our findings provide further evidence of sex differences in longitudinal adolescent brain development of subcortical regions and thus might eventually support the relationship of underlying brain development and different adolescent psychopathology in boys and girls.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Male , Adolescent , Female , Young Adult , Longitudinal Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Adolescent Development , Sex Characteristics
5.
Mol Psychiatry ; 28(2): 639-646, 2023 02.
Article in English | MEDLINE | ID: mdl-36481929

ABSTRACT

Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. However, their predictive value has not been established. Individual prediction through machine-learning algorithms might help bridge the gap to clinical relevance. A voting classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms was used to evaluate the predictive pertinence of gray matter volumes of interest and psychometric scores in the detection of prospective clinical anxiety. Participants with clinical anxiety at age 18-23 (N = 156) were investigated at age 14 along with healthy controls (N = 424). Shapley values were extracted for in-depth interpretation of feature importance. Prospective prediction of pooled anxiety disorders relied mostly on psychometric features and achieved moderate performance (area under the receiver operating curve = 0.68), while generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional volumes did not improve the prediction performance of prospective pooled anxiety disorders with respect to psychometric features alone, but they improved the prediction performance of GAD, with the caudate and pallidum volumes being among the most contributing features. To conclude, in non-anxious 14 year old adolescents, future clinical anxiety onset 4-8 years later could be individually predicted. Psychometric features such as neuroticism, hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for GAD and should be included in prospective clinical anxiety prediction in adolescents.


Subject(s)
Anxiety Disorders , Anxiety , Humans , Adolescent , Young Adult , Adult , Prospective Studies , Anxiety Disorders/psychology , Algorithms , Machine Learning
6.
Mol Psychiatry ; 28(2): 733-745, 2023 02.
Article in English | MEDLINE | ID: mdl-36357670

ABSTRACT

Alcohol use disorder (AUD) is a chronic and fatal disease. The main impediment of the AUD therapy is a high probability of relapse to alcohol abuse even after prolonged abstinence. The molecular mechanisms of cue-induced relapse are not well established, despite the fact that they may offer new targets for the treatment of AUD. Using a comprehensive animal model of AUD, virally-mediated and amygdala-targeted genetic manipulations by CRISPR/Cas9 technology and ex vivo electrophysiology, we identify a mechanism that selectively controls cue-induced alcohol relapse and AUD symptom severity. This mechanism is based on activity-regulated cytoskeleton-associated protein (Arc)/ARG3.1-dependent plasticity of the amygdala synapses. In humans, we identified single nucleotide polymorphisms in the ARC gene and their methylation predicting not only amygdala size, but also frequency of alcohol use, even at the onset of regular consumption. Targeting Arc during alcohol cue exposure may thus be a selective new mechanism for relapse prevention.


Subject(s)
Alcoholism , Central Amygdaloid Nucleus , Animals , Humans , Alcoholism/genetics , Chronic Disease , Cues , Ethanol , Recurrence , Nerve Tissue Proteins/metabolism , Cytoskeletal Proteins/metabolism
7.
Mol Psychiatry ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37369720

ABSTRACT

Leveraging ~10 years of prospective longitudinal data on 704 participants, we examined the effects of adolescent versus young adult cannabis initiation on MRI-assessed cortical thickness development and behavior. Data were obtained from the IMAGEN study conducted across eight European sites. We identified IMAGEN participants who reported being cannabis-naïve at baseline and had data available at baseline, 5-year, and 9-year follow-up visits. Cannabis use was assessed with the European School Survey Project on Alcohol and Drugs. T1-weighted MR images were processed through the CIVET pipeline. Cannabis initiation occurring during adolescence (14-19 years) and young adulthood (19-22 years) was associated with differing patterns of longitudinal cortical thickness change. Associations between adolescent cannabis initiation and cortical thickness change were observed primarily in dorso- and ventrolateral portions of the prefrontal cortex. In contrast, cannabis initiation occurring between 19 and 22 years of age was associated with thickness change in temporal and cortical midline areas. Follow-up analysis revealed that longitudinal brain change related to adolescent initiation persisted into young adulthood and partially mediated the association between adolescent cannabis use and past-month cocaine, ecstasy, and cannabis use at age 22. Extent of cannabis initiation during young adulthood (from 19 to 22 years) had an indirect effect on psychotic symptoms at age 22 through thickness change in temporal areas. Results suggest that developmental timing of cannabis exposure may have a marked effect on neuroanatomical correlates of cannabis use as well as associated behavioral sequelae. Critically, this work provides a foundation for neurodevelopmentally informed models of cannabis exposure in humans.

8.
Mol Psychiatry ; 28(2): 698-709, 2023 02.
Article in English | MEDLINE | ID: mdl-36380235

ABSTRACT

The neurobiological bases of the association between development and psychopathology remain poorly understood. Here, we identify a shared spatial pattern of cortical thickness (CT) in normative development and several psychiatric and neurological disorders. Principal component analysis (PCA) was applied to CT of 68 regions in the Desikan-Killiany atlas derived from three large-scale datasets comprising a total of 41,075 neurotypical participants. PCA produced a spatially broad first principal component (PC1) that was reproducible across datasets. Then PC1 derived from healthy adult participants was compared to the pattern of CT differences associated with psychiatric and neurological disorders comprising a total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working groups, normative maturation and aging comprising a total of 17,697 scans from the ABCD Study® and the IMAGEN developmental study, and 17,075 participants from the ENIGMA Lifespan working group, as well as gene expression maps from the Allen Human Brain Atlas. Results revealed substantial spatial correspondences between PC1 and widespread lower CT observed in numerous psychiatric disorders. Moreover, the PC1 pattern was also correlated with the spatial pattern of normative maturation and aging. The transcriptional analysis identified a set of genes including KCNA2, KCNS1 and KCNS2 with expression patterns closely related to the spatial pattern of PC1. The gene category enrichment analysis indicated that the transcriptional correlations of PC1 were enriched to multiple gene ontology categories and were specifically over-represented starting at late childhood, coinciding with the onset of significant cortical maturation and emergence of psychopathology during the prepubertal-to-pubertal transition. Collectively, the present study reports a reproducible latent pattern of CT that captures interregional profiles of cortical changes in both normative brain maturation and a spectrum of psychiatric disorders. The pubertal timing of the expression of PC1-related genes implicates disrupted neurodevelopment in the pathogenesis of the spectrum of psychiatric diseases emerging during adolescence.


Subject(s)
Mental Disorders , Potassium Channels, Voltage-Gated , Adult , Adolescent , Humans , Child , Brain , Mental Disorders/genetics , Mental Disorders/pathology , Aging/genetics , Magnetic Resonance Imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology
9.
Cereb Cortex ; 33(23): 11247-11256, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37782941

ABSTRACT

Accumulated evidence from animal studies suggests a role for the neuromodulator dopamine in memory processes, particularly under conditions of novelty or reward. Our understanding of how dopaminergic modulation impacts spatial representations and spatial memory in humans remains limited. Recent evidence suggests age-specific regulation effects of dopamine pharmacology on activity in the medial temporal lobe, a key region for spatial memory. To which degree this modulation affects spatially patterned medial temporal representations remains unclear. We reanalyzed recent data from a pharmacological dopamine challenge during functional brain imaging combined with a virtual object-location memory paradigm to assess the effect of Levodopa, a dopamine precursor, on grid-like activity in the entorhinal cortex. We found that Levodopa impaired grid cell-like representations in a sample of young adults (n = 55, age = 26-35 years) in a novel environment, accompanied by reduced spatial memory performance. We observed no such impairment when Levodopa was delivered to participants who had prior experience with the task. These results are consistent with a role of dopamine in modulating the encoding of novel spatial experiences. Our results suggest that dopamine signaling may play a larger role in shaping ongoing spatial representations than previously thought.


Subject(s)
Levodopa , Spatial Learning , Animals , Humans , Young Adult , Adult , Levodopa/pharmacology , Dopamine , Entorhinal Cortex/physiology , Spatial Memory
10.
Addict Biol ; 29(7): e13419, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949209

ABSTRACT

Substance use disorders (SUDs) are seen as a continuum ranging from goal-directed and hedonic drug use to loss of control over drug intake with aversive consequences for mental and physical health and social functioning. The main goals of our interdisciplinary German collaborative research centre on Losing and Regaining Control over Drug Intake (ReCoDe) are (i) to study triggers (drug cues, stressors, drug priming) and modifying factors (age, gender, physical activity, cognitive functions, childhood adversity, social factors, such as loneliness and social contact/interaction) that longitudinally modulate the trajectories of losing and regaining control over drug consumption under real-life conditions. (ii) To study underlying behavioural, cognitive and neurobiological mechanisms of disease trajectories and drug-related behaviours and (iii) to provide non-invasive mechanism-based interventions. These goals are achieved by: (A) using innovative mHealth (mobile health) tools to longitudinally monitor the effects of triggers and modifying factors on drug consumption patterns in real life in a cohort of 900 patients with alcohol use disorder. This approach will be complemented by animal models of addiction with 24/7 automated behavioural monitoring across an entire disease trajectory; i.e. from a naïve state to a drug-taking state to an addiction or resilience-like state. (B) The identification and, if applicable, computational modelling of key molecular, neurobiological and psychological mechanisms (e.g., reduced cognitive flexibility) mediating the effects of such triggers and modifying factors on disease trajectories. (C) Developing and testing non-invasive interventions (e.g., Just-In-Time-Adaptive-Interventions (JITAIs), various non-invasive brain stimulations (NIBS), individualized physical activity) that specifically target the underlying mechanisms for regaining control over drug intake. Here, we will report on the most important results of the first funding period and outline our future research strategy.


Subject(s)
Substance-Related Disorders , Humans , Animals , Germany , Behavior, Addictive , Alcoholism
11.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928372

ABSTRACT

S/S carriers of 5-HTTLPR have been found to be more risk seeking for losses compared to L/L carriers. This finding may be the result of reduced top-down control from the frontal cortex due to altered signal pathways involving the amygdala and ventral striatum. The serotonergic system is known to be involved in neurodevelopment and neuroplasticity. Therefore, the aim of this study was to investigate whether structural differences in white matter can explain the differences in risk-seeking behaviour. Lower structural connectivity in S/S compared to L/L carriers and a negative relationship between risk seeking for losses and connectivity were assumed. Diffusion-weighted imaging was used to compute diffusion parameters for the frontostriatal and uncinate tract in 175 genotyped individuals. The results showed no significant relationship between diffusion parameters and risk seeking for losses. Furthermore, we did not find significant differences in diffusion parameters of the S/S vs. L/L group. There were only group differences in the frontostriatal tract showing stronger structural connectivity in the S/L group, which is also reflected in the whole brain approach. Therefore, the data do not support the hypothesis that the association between 5-HTTLPR and risk seeking for losses is related to differences in white matter pathways implicated in decision-making.


Subject(s)
Serotonin Plasma Membrane Transport Proteins , White Matter , Adult , Female , Humans , Male , Diffusion Magnetic Resonance Imaging , Genotype , Risk-Taking , Serotonin Plasma Membrane Transport Proteins/genetics , White Matter/diagnostic imaging , White Matter/pathology
12.
Neuroimage ; 273: 120099, 2023 06.
Article in English | MEDLINE | ID: mdl-37037380

ABSTRACT

Aging is associated with changes in spatial navigation behavior. In addition to an overall performance decline, older adults tend to rely more on proximal location cue information than on environmental boundary information during spatial navigation compared to young adults. The fact that older adults are more susceptible to errors during spatial navigation might be partly attributed to deficient dopaminergic modulation of hippocampal and striatal functioning. Hence, elevating dopamine levels might differentially modulate spatial navigation and memory performance in young and older adults. In this work, we administered levodopa (L-DOPA) in a double-blind within-subject, placebo-controlled design and recorded functional neuroimaging while young and older adults performed a 3D spatial navigation task in which boundary geometry or the position of a location cue were systematically manipulated. An age by intervention interaction on the neural level revealed an upregulation of brain responses in older adults and a downregulation of responses in young adults within the medial temporal lobe (including hippocampus and parahippocampus) and brainstem, during memory retrieval. Behaviorally, L-DOPA had no effect on older adults' overall memory performance; however, older adults whose spatial memory improved under L-DOPA also showed a shift towards more boundary processing under L-DOPA. In young adults, L-DOPA induced a decline in spatial memory performance in task-naïve participants. These results are consistent with the inverted-U-shaped hypothesis of dopamine signaling and cognitive function and suggest that increasing dopamine availability improves hippocampus-dependent place learning in some older adults.


Subject(s)
Dopamine , Spatial Navigation , Aged , Humans , Young Adult , Hippocampus/physiology , Levodopa/pharmacology , Spatial Memory/physiology , Spatial Navigation/physiology , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Double-Blind Method
13.
Hum Brain Mapp ; 44(4): 1359-1370, 2023 03.
Article in English | MEDLINE | ID: mdl-36288248

ABSTRACT

The temporal specificity of functional magnetic resonance imaging (fMRI) is limited by a sluggish and locally variable hemodynamic response trailing the neural activity by seconds. Here, we demonstrate for an attention capture paradigm that it is, never the less, possible to extract information about the relative timing of regional brain activity during cognitive processes on the scale of 100 ms by comparing alternative signal models representing early versus late activation. We demonstrate that model selection is not driven by confounding regional differences in hemodynamic delay. We show, including replication, that the activity in the dorsal anterior insula is an early signal predictive of behavioral performance, while amygdala and ventral anterior insula signals are not. This specific finding provides new insights into how the brain assigns salience to stimuli and emphasizes the role of the dorsal anterior insula in this context. The general analytic approach, named "Cognitive Timing through Model Comparison" (CTMC), offers an exciting and novel method to identify functional brain subunits and their causal interactions.


Subject(s)
Brain Mapping , Brain , Humans , Brain/physiology , Attention/physiology , Magnetic Resonance Imaging/methods , Cognition , Emotions/physiology
14.
Psychol Med ; 53(8): 3426-3436, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35343412

ABSTRACT

BACKGROUND: The serotonin (5-HT) hypothesis of anorexia nervosa (AN) posits that individuals predisposed toward or recovered from AN (recAN) have a central nervous hyperserotonergic state and therefore restrict food intake as a means to reduce 5-HT availability (via diminished tryptophan-derived precursor supply) and alleviate associated negative mood states. Importantly, the 5-HT system has also been generally implicated in reward processing, which has also been shown to be altered in AN. METHODS: In this double-blind crossover study, 22 individuals recAN and 25 healthy control participants (HC) underwent functional magnetic resonance imaging (fMRI) while performing an established instrumental reward learning paradigm during acute tryptophan depletion (ATD; a dietary intervention that lowers central nervous 5-HT availability) as well as a sham depletion. RESULTS: On a behavioral level, the main effects of reward and ATD were evident, but no group differences were found. fMRI analyses revealed a group × ATD × reward level interaction in the ventral anterior insula during reward anticipation as well as in the medial orbitofrontal cortex during reward consumption. DISCUSSION: The precise pattern of results is suggestive of a 'normalization' of reward-related neural responses during ATD in recAN compared to HC. Our results lend further evidence to the 5-HT hypothesis of AN. Decreasing central nervous 5-HT synthesis and availability during ATD and possibly also by dieting may be a means to normalize 5-HT availability and associated brain processes.


Subject(s)
Anorexia Nervosa , Magnetic Resonance Imaging , Humans , Tryptophan , Anorexia Nervosa/diagnostic imaging , Serotonin , Cross-Over Studies , Reward
15.
Psychol Med ; 53(5): 1759-1769, 2023 04.
Article in English | MEDLINE | ID: mdl-37310336

ABSTRACT

BACKGROUND: It has not yet been determined if the commonly reported cannabis-psychosis association is limited to individuals with pre-existing genetic risk for psychotic disorders. METHODS: We examined whether the relationship between polygenic risk score for schizophrenia (PRS-Sz) and psychotic-like experiences (PLEs), as measured by the Community Assessment of Psychic Experiences-42 (CAPE-42) questionnaire, is mediated or moderated by lifetime cannabis use at 16 years of age in 1740 of the individuals of the European IMAGEN cohort. Secondary analysis examined the relationships between lifetime cannabis use, PRS-Sz and the various sub-scales of the CAPE-42. Sensitivity analyses including covariates, including a PRS for cannabis use, were conducted and results were replicated using data from 1223 individuals in the Dutch Utrecht cannabis cohort. RESULTS: PRS-Sz significantly predicted cannabis use (p = 0.027) and PLE (p = 0.004) in the IMAGEN cohort. In the full model, considering PRS-Sz and covariates, cannabis use was also significantly associated with PLE in IMAGEN (p = 0.007). Results remained consistent in the Utrecht cohort and through sensitivity analyses. Nevertheless, there was no evidence of a mediation or moderation effects. CONCLUSIONS: These results suggest that cannabis use remains a risk factor for PLEs, over and above genetic vulnerability for schizophrenia. This research does not support the notion that the cannabis-psychosis link is limited to individuals who are genetically predisposed to psychosis and suggests a need for research focusing on cannabis-related processes in psychosis that cannot be explained by genetic vulnerability.


Subject(s)
Cannabis , Hallucinogens , Psychotic Disorders , Schizophrenia , Humans , Young Adult , Adult , Schizophrenia/epidemiology , Schizophrenia/genetics , Cannabis/adverse effects , Psychotic Disorders/epidemiology , Psychotic Disorders/genetics , Cannabinoid Receptor Agonists
16.
J Child Psychol Psychiatry ; 64(8): 1159-1175, 2023 08.
Article in English | MEDLINE | ID: mdl-36990655

ABSTRACT

BACKGROUND: Stress exposure in childhood and adolescence has been linked to reductions in cortical structures and cognitive functioning. However, to date, most of these studies have been cross-sectional, limiting the ability to make long-term inferences, given that most cortical structures continue to develop through adolescence. METHODS: Here, we used a subset of the IMAGEN population cohort sample (N = 502; assessment ages: 14, 19, and 22 years; mean age: 21.945 years; SD = 0.610) to understand longitudinally the long-term interrelations between stress, cortical development, and cognitive functioning. To these ends, we first used a latent change score model to examine four bivariate relations - assessing individual differences in change in the relations between adolescent stress exposure and volume, surface area, and cortical thickness of cortical structures, as well as cognitive outcomes. Second, we probed for indirect neurocognitive effects linking stress to cortical brain structures and cognitive functions using rich longitudinal mediation modeling. RESULTS: Latent change score modeling showed that greater baseline adolescence stress at age 14 predicted a small reduction in the right anterior cingulate volume (Std. ß = -.327, p = .042, 95% CI [-0.643, -0.012]) and right anterior cingulate surface area (Std. ß = -.274, p = .038, 95% CI [-0.533, -0.015]) across ages 14-22. These effects were very modest in nature and became nonsignificant after correcting for multiple comparisons. Our longitudinal analyses found no evidence of indirect effects in the two neurocognitive pathways linking adolescent stress to brain and cognitive outcomes. CONCLUSION: Findings shed light on the impact of stress on brain reductions, particularly in the prefrontal cortex that have consistently been implicated in the previous cross-sectional studies. However, the magnitude of effects observed in our study is smaller than that has been reported in past cross-sectional work. This suggests that the potential impact of stress during adolescence on brain structures may likely be more modest than previously noted.


Subject(s)
Stress, Psychological , Adolescent , Humans , Young Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Longitudinal Studies , Magnetic Resonance Imaging , Psychology, Adolescent
17.
Addict Biol ; 28(2): e13263, 2023 02.
Article in English | MEDLINE | ID: mdl-36692874

ABSTRACT

Pavlovian cues can influence ongoing instrumental behaviour via Pavlovian-to-instrumental transfer (PIT) processes. While appetitive Pavlovian cues tend to promote instrumental approach, they are detrimental when avoidance behaviour is required, and vice versa for aversive cues. We recently reported that susceptibility to interference between Pavlovian and instrumental control assessed via a PIT task was associated with risky alcohol use at age 18. We now investigated whether such susceptibility also predicts drinking trajectories until age 24, based on AUDIT (Alcohol Use Disorders Identification Test) consumption and binge drinking (gramme alcohol/drinking occasion) scores. The interference PIT effect, assessed at ages 18 and 21 during fMRI, was characterized by increased error rates (ER) and enhanced neural responses in the ventral striatum (VS), the lateral and dorsomedial prefrontal cortices (dmPFC) during conflict, that is, when an instrumental approach was required in the presence of an aversive Pavlovian cue or vice versa. We found that a stronger VS response during conflict at age 18 was associated with a higher starting point of both drinking trajectories but predicted a decrease in binge drinking. At age 21, high ER and enhanced neural responses in the dmPFC were associated with increasing AUDIT-C scores over the next 3 years until age 24. Overall, susceptibility to interference between Pavlovian and instrumental control might be viewed as a predisposing mechanism towards hazardous alcohol use during young adulthood, and the identified high-risk group may profit from targeted interventions.


Subject(s)
Alcoholism , Binge Drinking , Humans , Young Adult , Adult , Adolescent , Conditioning, Operant/physiology , Conditioning, Classical/physiology , Avoidance Learning , Cues
18.
Addict Biol ; 28(11): e13339, 2023 11.
Article in English | MEDLINE | ID: mdl-37855075

ABSTRACT

Alcohol dependence (AD) is a debilitating disease associated with high relapse rates even after long periods of abstinence. Thus, elucidating neurobiological substrates of relapse risk is fundamental for the development of novel targeted interventions that could promote long-lasting abstinence. In the present study, we analysed resting-state functional magnetic resonance imaging (rsfMRI) data from a sample of recently detoxified patients with AD (n = 93) who were followed up for 12 months after rsfMRI assessment. Specifically, we employed graph theoretic analyses to compare functional brain network topology and functional connectivity between future relapsers (REL, n = 59), future abstainers (ABS, n = 28) and age- and gender-matched controls (CON, n = 83). Our results suggest increased whole-brain network segregation, decreased global network integration and overall blunted connectivity strength in REL compared with CON. Conversely, we found evidence for a comparable network architecture in ABS relative to CON. At the nodal level, REL exhibited decreased integration and decoupling between multiple brain systems compared with CON, encompassing regions associated with higher-order executive functions, sensory and reward processing. Among patients with AD, increased coupling between nodes implicated in reward valuation and salience attribution constitutes a particular risk factor for future relapse. Importantly, aberrant network organization in REL was consistently associated with shorter abstinence duration during follow-up, portending to a putative neural signature of relapse risk in AD. Future research should further evaluate the potential diagnostic value of the identified changes in network topology and functional connectivity for relapse prediction at the individual subject level.


Subject(s)
Alcoholism , Humans , Alcoholism/diagnostic imaging , Follow-Up Studies , Brain/diagnostic imaging , Ethanol , Brain Mapping/methods , Recurrence , Magnetic Resonance Imaging/methods
19.
Proc Natl Acad Sci U S A ; 117(22): 12411-12418, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32430323

ABSTRACT

Genetic factors and socioeconomic status (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used a polygenic score for educational attainment (EduYears-PGS), as well as SES, in a longitudinal study of 551 adolescents to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r = 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to nonverbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This study demonstrates a regional association of EduYears-PGS and the independent prediction of SES with cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.


Subject(s)
Brain/growth & development , Cognition , Educational Status , Academic Success , Adolescent , Adult , Brain/diagnostic imaging , Brain/physiology , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Memory, Short-Term , Multifactorial Inheritance , Social Class , Young Adult
20.
Eur Child Adolesc Psychiatry ; 32(9): 1633-1642, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35318541

ABSTRACT

It has been suggested that autistic traits are associated with less frequent alcohol use in adolescence. Our study seeks to examine the relationship between autistic traits and alcohol use in a large adolescent population. Leveraging data from the IMAGEN cohort, including 2045 14-year-old adolescents that were followed-up to age 18, we selected items on social preference/skills and rigidity from different questionnaires. We used linear regression models to (1) test the effect of the sum scores on the prevalence of alcohol use (AUDIT-C) over time, (2) explore the relationship between autistic traits and alcohol use patterns, and (3) explore the specific effect of each autistic trait on alcohol use. Higher scores on the selected items were associated with trajectories of less alcohol use from the ages between 14 and 18 (b = - 0.030; CI 95% = - 0.042, - 0.017; p < 0.001). Among adolescents who used alcohol, those who reported more autistic traits were also drinking less per occasion than their peers and were less likely to engage in binge drinking. We found significant associations between alcohol use and social preference (p < 0.001), nervousness for new situations (p = 0.001), and detail orientation (p < 0.001). Autistic traits (social impairment, detail orientation, and anxiety) may buffer against alcohol use in adolescence.


Subject(s)
Autistic Disorder , Humans , Adolescent , Anxiety Disorders , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL