Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 857(Pt 1): 159179, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36191722

ABSTRACT

Grasslands cover a large proportion of global agricultural landmass used to feed herbivores and ruminants and link the environment to the food chain via animals onto humans. However, most scientific studies of antimicrobial resistance and microbiomes at the environmental - animal nexus have focused on soil or vegetables rather than grasslands. Based on previous microbiome phyllosphere-soil studies we hypothesised that the microbiome and resistomes across soil and grass would have a core of shared taxa and antimicrobial resistance genes (ARGs), but that in addition each would also have a minority of unique signatures. Our data indicated grass contained a wider variety and higher relative abundance of ARGs and mobile genetic elements (MGEs) than soil with or without slurry amendments. The microbiomes of soil and grass were similar in content but varied in the composition proportionality. While there were commonalities across many of the ARGs present in soil and on grass their correlations with MGEs and bacteria differed, suggesting a source other than soil is also relevant for the resistome of grass. The variations in the relative abundances of ARGs in soil and on grass also indicated that either the MGEs or the bacteria carrying the ARGs comprised a higher relative abundance on grass than in soil. We conclude that while soil may be a source of some of these genes it cannot be the source for all ARGs and MGEs. Our data identifies grass as a more diverse and abundant reservoir of ARGs and MGEs in the environment than soil, which is significant to human and animal health when viewed in the context of grazing food animals.


Subject(s)
Microbiota , Soil , Animals , Humans , Anti-Bacterial Agents/pharmacology , Poaceae , Soil Microbiology , Genes, Bacterial , Drug Resistance, Bacterial , Bacteria
2.
Microb Genom ; 8(8)2022 08.
Article in English | MEDLINE | ID: mdl-35960657

ABSTRACT

Our study provides novel insights into the global nature of antimicrobial resistance (AMR) plasmids across the food chain. We provide compelling evidence of the globetrotting nature of AMR plasmids and the need for surveillance to sequence plasmids with a template of analyses for others to expand these data. The AMR plasmids analysed were detected in 63 countries and in samples from humans, animals and the environment. They contained a combination of known and novel AMR genes, metal resistance genes, virulence factors, phage and replicon types.


Subject(s)
Anti-Infective Agents , One Health , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Plasmids/genetics
3.
Access Microbiol ; 3(1): acmi000179, 2021.
Article in English | MEDLINE | ID: mdl-33997610

ABSTRACT

The human gut microbiome includes beneficial, commensal and pathogenic bacteria that possess antimicrobial resistance (AMR) genes and exchange these predominantly through conjugative plasmids. Escherichia coli is a significant component of the gastrointestinal microbiome and is typically non-pathogenic in this niche. In contrast, extra-intestinal pathogenic E. coli (ExPEC) including ST131 may occupy other environments like the urinary tract or bloodstream where they express genes enabling AMR and host cell adhesion like type 1 fimbriae. The extent to which commensal E. coli and uropathogenic ExPEC ST131 share AMR genes remains understudied at a genomic level, and we examined this here using a preterm infant resistome. We found that individual ST131 had small differences in AMR gene content relative to a larger shared resistome. Comparisons with a range of plasmids common in ST131 showed that AMR gene composition was driven by conjugation, recombination and mobile genetic elements. Plasmid pEK499 had extended regions in most ST131 Clade C isolates, and it had evidence of a co-evolutionary signal based on protein-level interactions with chromosomal gene products, as did pEK204 that had a type IV fimbrial pil operon. ST131 possessed extensive diversity of selective type 1, type IV, P and F17-like fimbriae genes that was highest in subclade C2. The structure and composition of AMR genes, plasmids and fimbriae vary widely in ST131 Clade C and this may mediate pathogenicity and infection outcomes.

4.
Environ Pollut ; 262: 114244, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32146363

ABSTRACT

Wastewater treatment plants (WWTPs) provide optimal conditions for the maintenance and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this work we describe the occurrence of antibiotic resistant faecal coliforms and their mechanisms of antibiotic resistance in the effluent of two urban WWTPs in Ireland. This information is critical to identifying the role of WWTPs in the dissemination of ARB and ARGs into the environment. Effluent samples were collected from two WWTPs in Spring and Autumn of 2015 and 2016. The bacterial susceptibility patterns to 13 antibiotics were determined. The phenotypic tests were carried out to identify AmpC or extended-spectrum ß-lactamase (ESBL) producers. The presence of ESBL genes were detected by PCR. Plasmids carrying ESBL genes were transformed into Escherichia coli DH5α recipient and underwent plasmid replicon typing to identify incompatibility groups. More than 90% of isolated faecal coliforms were resistant to amoxicillin and ampicillin, followed by tetracycline (up to 39.82%), ciprofloxacin (up to 31.42%) and trimethoprim (up to 37.61%). Faecal coliforms resistant to colistin (up to 31.62%) and imipenem (up to 15.93%) were detected in all effluent samples. Up to 53.98% of isolated faecal coliforms expressed a multi-drug resistance (MRD) phenotype. AmpC production was confirmed in 5.22% of isolates. The ESBL genes were confirmed for 11.84% of isolates (9.2% of isolates carried blaTEM, 1.4% blaSHV-12, 0.2% blaCTX-M-1 and 1% blaCTX-M-15). Plasmids extracted from 52 ESBL isolates were successfully transformed into recipient E. coli. The detected plasmid incompatibility groups included the IncF group, IncI1, IncHI1/2 and IncA/C. These results provide evidence that treated wastewater is polluted with ARB and MDR faecal coliforms and are sources of ESBL-producing, carbapenem and colistin resistant Enterobacteriaceae.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli/genetics , Humans , Ireland , Plasmids , Wastewater , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL