Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Glob Chang Biol ; 29(6): 1471-1483, 2023 03.
Article in English | MEDLINE | ID: mdl-36478041

ABSTRACT

Increasing soil organic carbon (SOC) stocks is increasingly targeted as a key strategy in climate change mitigation and improved ecosystem resiliency. Agricultural land, a dominant global land use, provides substantial challenges and opportunities for global carbon sequestration. Despite this, global estimates of soil carbon sequestration potential often exclude agricultural land and estimates are coarse for regions in the Global South. To address these discrepancies and improve estimates, we develop a hybrid, data-augmented database approach to better estimate the magnitude of SOC sequestration potential of agricultural soils. With high-resolution (30 m) soil maps of Africa developed by the International Soils Database (iSDA) and Malawi as a case study, we create a national adjustment using site-specific soil data retrieved from 1160 agricultural fields. We use a benchmark approach to estimate the amount of SOC Malawian agricultural soils can sequester, accounting for edaphic and climatic conditions, and calculate the resulting carbon gap. Field measurements of SOC stocks and sequestration potentials were consistently larger than iSDA predictions, with an average carbon gap of 4.42 ± 0.23 Mg C ha-1 to a depth of 20 cm, with some areas exceeding 10 Mg C ha-1 . Augmenting iSDA predictions with field data also improved sensitivity to identify areas with high SOC sequestration potential by 6%-areas that may benefit from improved management practices. Overall, we estimate that 6.8 million ha of surface soil suitable for agriculture in Malawi has the potential to store 274 ± 14 Tg SOC. Our approach illustrates how ground truthing efforts remain essential to reduce errors in continent-wide soil carbon predictions for local and regional use. This work begins efforts needed across regions to develop soil carbon benchmarks that inform policies and identify high-impact areas in the effort to increase SOC globally.


Subject(s)
Carbon , Soil , Farms , Ecosystem , Agriculture , Carbon Sequestration
2.
Environ Manage ; 72(2): 333-342, 2023 08.
Article in English | MEDLINE | ID: mdl-37004534

ABSTRACT

A critical question is whether agroecology can promote climate change mitigation and adaptation outcomes without compromising food security. We assessed the outcomes of smallholder agricultural systems and practices in low- and middle-income countries (LMICs) against 35 mitigation, adaptation, and yield indicators by reviewing 50 articles with 77 cases of agroecological treatments relative to a baseline of conventional practices. Crop yields were higher for 63% of cases reporting yields. Crop diversity, income diversity, net income, reduced income variability, nutrient regulation, and reduced pest infestation, indicators of adaptative capacity, were associated with 70% or more of cases. Limited information on climate change mitigation, such as greenhouse gas emissions and carbon sequestration impacts, was available. Overall, the evidence indicates that use of organic nutrient sources, diversifying systems with legumes and integrated pest management lead to climate change adaptation in multiple contexts. Landscape mosaics, biological control (e.g., enhancement of beneficial organisms) and field sanitation measures do not yet have sufficient evidence based on this review. Widespread adoption of agroecological practices and system transformations shows promise to contribute to climate change services and food security in LMICs. Gaps in adaptation and mitigation strategies and areas for policy and research interventions are finally discussed.


Subject(s)
Climate Change , Greenhouse Gases , Agriculture , Adaptation, Physiological , Nutrients
3.
Field Crops Res ; 270: 108193, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34366552

ABSTRACT

Meeting future global staple crop demand requires continual productivity improvement. Many performance indicators have been proposed to track and measure the increase in productivity while minimizing environmental degradation. However, their use has lagged behind theory, and has not been uniform across crops in different geographies. The consequence is an uneven understanding of opportunities for sustainable intensification. Simple but robust key performance indicators (KPIs) are needed to standardize knowledge across crops and geographies. This paper defines a new term 'agronomic gain' based on an improvement in KPIs, including productivity, resource use efficiencies, and soil health that a specific single or combination of agronomic practices delivers under certain environmental conditions. We apply the concept of agronomic gain to the different stages of science-based agronomic innovations and provide a description of different approaches used to assess agronomic gain including yield gap assessment, meta-data analysis, on-station and on-farm studies, impact assessment, panel studies, and use of subnational and national statistics for assessing KPIs at different stages. We mainly focus on studies on rice in sub-Saharan Africa, where large yield gaps exist. Rice is one of the most important staple food crops and plays an essential role in food security in this region. Our analysis identifies major challenges in the assessment of agronomic gain, including differentiating agronomic gain from genetic gain, unreliable in-person interviews, and assessment of some KPIs at a larger scale. To overcome these challenges, we suggest to (i) conduct multi-environment trials for assessing variety × agronomic practice × environment interaction on KPIs, and (ii) develop novel approaches for assessing KPIs, through development of indirect methods using remote-sensing technology, mobile devices for systematized site characterization, and establishment of empirical relationships among KPIs or between agronomic practices and KPIs.

4.
Land Degrad Dev ; 32(9): 2681-2694, 2021 May 30.
Article in English | MEDLINE | ID: mdl-34239284

ABSTRACT

We use recent plot-level panel data from Tanzanian smallholder farmers to investigate maize yield responses to inorganic fertilizer under variable soil carbon conditions. Unlike many prior studies which consider total carbon measurements, we focus on active soil carbon, which is a component strongly related to key soil functions, such as nutrient cycling and availability. Active soil carbon is found to be a strong predictor of maize yield response to nitrogen fertilizer. These results highlight important sources of variation in the returns to fertilizer investments across plots and smallholder farmers in the region. When farmgate prices for maize and fertilizer are incorporated into calculations of economic returns, we find that the profitability of fertilizer use is strongly dependent upon farmgate price ratio assumptions: under our most optimistic agronomic response estimates, 39% of farmer plots have an average value-cost ratio greater than 1.5 at a maize-nitrogen price ratio of 0.15. That share drops to 4% at a price ratio of 0.12 and 0% at a price ratio of 0.09. Our findings provide insights into the intertwined biophysical and economic underpinnings of low levels of fertilizer use in Tanzania and elsewhere in the region. Raising active carbon stocks in smallholder systems may be a strategic priority in many areas for incentivizing greater use of inorganic fertilizer, reversing land degradation, and achieving sustainable agricultural intensification.

5.
Am J Bot ; 107(12): 1693-1709, 2020 12.
Article in English | MEDLINE | ID: mdl-33340368

ABSTRACT

PREMISE: Nucleic acid integrity can be compromised under many abiotic stresses. To date, however, few studies have considered whether nucleic acid damage and damage repair play a role in cold-stress adaptation. A further insufficiently explored question concerns how age affects cold stress adaptation among mature perennials. As a plant ages, the optimal trade-off between growth and stress tolerance may shift. METHODS: Oxidative damage to RNA and expression of genes involved in DNA repair were compared in multiple mature cohorts of Thinopyrum intermedium (an emerging perennial cereal) and in wheat and barley under intermittent freezing stress and under nonfreezing conditions. Activity of glutathione peroxidase (GPX) and four other antioxidative enzymes was also measured under these conditions. DNA repair genes included photolyases involved in repairing ultraviolet-induced damage and two genes involved in repairing oxidatively induced damage (ERCC1, RAD23). RESULTS: Freezing stress was accompanied by large increases in photolyase expression and ERCC1 expression (in wheat and Thinopyrum) and in GPX and GR activity (particularly in Thinopyrum). This is the first report of DNA photolyases being overexpressed under freezing stress. Older Thinopyrum had lower photolyase expression and less freezing-induced overexpression of ERCC1. Younger Thinopyrum plants sustained more oxidative damage to RNA. CONCLUSIONS: Overexpression of DNA repair genes is an important aspect of cold acclimation. When comparing adult cohorts, aging was associated with changes in the freezing stress response, but not with overall increases or decreases in stress tolerance.


Subject(s)
Nucleic Acids , Triticum , DNA Repair , Freezing , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Poaceae , Triticum/genetics , Triticum/metabolism
6.
Proc Natl Acad Sci U S A ; 114(5): 926-931, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096409

ABSTRACT

Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.


Subject(s)
Agriculture/methods , Michigan , Rain , Soil , Glycine max/growth & development , Triticum/growth & development , Zea mays/growth & development
7.
Agric Syst ; 171: 89-99, 2019 May.
Article in English | MEDLINE | ID: mdl-31057209

ABSTRACT

Perennial crops offer the opportunity to harvest from the same plant many times over several years while reducing labor and seed costs, reducing emissions and increasing biomass input into the soil. We use system dynamics modeling to combine data from field experiments, crop modeling and choice experiments to explore the potential for adoption and diffusion of a sustainable agriculture technology in a risky environment with high variability in annual rainfall: the perennial management of pigeonpea in maize-based systems of Malawi. Production estimates from a crop model for the annual intercrop system and data from field experiments on ratooning for the perennial system provided the information to create a stochastic production model. Data from choice experiments posed by a farmer survey conducted in three Malawi districts provide the information for parameters on farmers' preferences for the attributes of the perennial system. The perennial pigeonpea technology appeared clearly superior in scenarios where average values for maize yield and pigeonpea biomass production were held constant. Adoption was fastest in scenarios where relatively dry growing seasons showcased the benefits of the perennial system, suggesting that perennial management may be appropriate in marginal locations. The potential for adoption was reduced greatly when stochasticity in yields and seasons combine with significant social pressure to conform. The mechanism for this is that low yields suppress adoption and increase disadoption due to the dynamics of trust in the technology. This finding is not unique to perennial pigeonpea, but suggests that a critical factor in explaining low adoption rates of any new agricultural technology is the stochasticity in a technology's performance. Understanding how that stochasticity interacts with the social dynamics of learning skills and communicating trust is a critical feature for the successful deployment of sustainable agricultural technologies, and a novel finding of our study.

8.
Environ Res ; 159: 283-290, 2017 11.
Article in English | MEDLINE | ID: mdl-28825982

ABSTRACT

Modern plant breeding tends to focus on maximizing yield, with one of the most ubiquitous implementations being shorter-duration crop varieties. It is indisputable that these breeding efforts have resulted in greater yields in ideal circumstances; however, many farmed locations across Africa suffer from one or more conditions that limit the efficacy of modern short-duration hybrids. In view of global change and increased necessity for intensification, perennial grains and long-duration varieties offer a nature-based solution for improving farm productivity and smallholder livelihoods in suboptimal agricultural areas. Specific conditions where perennial grains should be considered include locations where biophysical and social constraints reduce agricultural system efficiency, and where conditions are optimal for crop growth. Using a time-series of remotely-sensed data, we locate the marginal agricultural lands of Africa, identifying suboptimal temperature and precipitation conditions for the dominant crop, i.e., maize, as well as optimal climate conditions for two perennial grains, pigeonpea and sorghum. We propose that perennial grains offer a lower impact, sustainable nature-based solution to this subset of climatic drivers of marginality. Using spatial analytic methods and satellite-derived climate information, we demonstrate the scalability of perennial pigeonpea and sorghum across Africa. As a nature-based solution, we argue that perennial grains offer smallholder farmers of marginal lands a sustainable solution for enhancing resilience and minimizing risk in confronting global change, while mitigating social and edaphic drivers of low and variable production.


Subject(s)
Agriculture/methods , Climate , Crops, Agricultural/growth & development , Edible Grain/growth & development , Geographic Mapping , Africa , Cajanus/growth & development , Sorghum/growth & development , Zea mays/growth & development
9.
Ecol Econ ; 131: 222-230, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28050117

ABSTRACT

Perennial crops have numerous ecological and agronomic advantages over their annual counterparts. We estimate discrete choice models to evaluate farmers' preferences for perennial attributes of pigeon pea intercropped with maize in central and southern Malawi. Pigeon pea is a nitrogen-fixing leguminous crop, which has the potential to ameliorate soil fertility problems related to continuous maize cultivation, which are common in Southern Africa. Adoption of annual pigeon pea is relatively low but perennial production of pigeon pea may be more appealing to farmers due to some of the ancillary benefits associated with perenniality. We model perennial production of pigeon pea as a function of the attributes that differ between annual and perennial production: lower labor and seed requirements resulting from a single planting with multiple harvests, enhanced soil fertility and higher levels of biomass production. The primary tradeoff associated with perennial pigeon pea intercropped with maize is competition with maize in subsequent years of production. While maize yield is approximately twice as valuable to farmers as pigeon pea yield, we find positive yet heterogeneous demand for perenniality driven by soil fertility improvements and pigeon pea grain yield.

10.
J Exp Bot ; 67(15): 4743-53, 2016 08.
Article in English | MEDLINE | ID: mdl-27401911

ABSTRACT

Effects of plant age on resource acquisition and stress tolerance processes is a largely unstudied subject in herbaceous perennials. In a field experiment, we compared rates of photosynthesis (A), ribulose-1,5-bisphosphate (RuBP) carboxylation capacity (V Cmax), maximum electron transport rate (J max), and triose phosphate utilization (TPU), as well as concentrations of Rubisco and sucrose-phosphate synthase (SPS) in 5-year-old and 2-year-old intermediate wheatgrass (Thinopyrum intermedium) under both optimal growing conditions and cold stress in early spring and autumn. This species is a relative of wheat undergoing domestication. An additional experiment compared photosynthetic rates in different cohorts at mid-season and under colder conditions. We hypothesized that photosynthetic capacity in older plants would be lower under favorable conditions but higher under cold stress. Our hypothesis was generally supported. Under cold stress, 5-year-old plants exhibited higher A, TPU, and temperature-adjusted V Cmax than younger plants, as well as 50% more SPS and 37% more Rubisco. In contrast, at mid-season, photosynthetic capacities in older plants were lower than in younger plants in one experiment, and similar in the other, independent of differences in water status. Both cohorts increased A, temperature-adjusted TPU and J max, [Rubisco], and [SPS] under cold stress, but changes were greater in older plants. Photosynthetic differences were largest at 1.2 ºC in very early spring, where older plants had 200% higher A and maintained up to 17% of their peak photosynthetic capacity. We find evidence of increased cold tolerance in older cohorts of wheatgrass, consistent with a growing body of research in woody perennials.


Subject(s)
Photosynthesis/physiology , Poaceae/physiology , Aging/physiology , Cold Temperature , Electron Transport/physiology , Freezing , Poaceae/enzymology , Poaceae/metabolism , Ribulosephosphates/metabolism , Stress, Physiological/physiology
11.
Bioscience ; 64(5): 404-415, 2014 May 01.
Article in English | MEDLINE | ID: mdl-26955069

ABSTRACT

A balanced assessment of ecosystem services provided by agriculture requires a systems-level socioecological understanding of related management practices at local to landscape scales. The results from 25 years of observation and experimentation at the Kellogg Biological Station long-term ecological research site reveal services that could be provided by intensive row-crop ecosystems. In addition to high yields, farms could be readily managed to contribute clean water, biocontrol and other biodiversity benefits, climate stabilization, and long-term soil fertility, thereby helping meet society's need for agriculture that is economically and environmentally sustainable. Midwest farmers-especially those with large farms-appear willing to adopt practices that deliver these services in exchange for payments scaled to management complexity and farmstead benefit. Surveyed citizens appear willing to pay farmers for the delivery of specific services, such as cleaner lakes. A new farming for services paradigm in US agriculture seems feasible and could be environmentally significant.

12.
Am J Bot ; 100(12): 2468-77, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24322893

ABSTRACT

PREMISE OF THE STUDY: Few previous studies have considered how plant age affects photosynthetic physiology in herbaceous perennials or how photosynthetic capacity in annual cereals compares to perennial relatives. Newly developed perennial cereals offer novel systems for addressing these questions. Our study makes a novel contribution by considering how life history differences affect photosynthetic physiology. METHODS: In two linked field studies, we evaluated effects of life history and plant age on photosynthetic rates (A), and related biochemical, morphological, and water-relations traits, comparing 1- and 2-yr-old cohorts of perennial wheat, intermediate wheatgrass, and perennial rye to close annual relatives (wheat and rye). KEY RESULTS: Photosynthetic rates (A) were 10-50% higher in perennial cereals compared to annuals. In wheatgrass, elevated A was associated with higher carboxylation (VC), triose phosphate utilization (TPU) and electron transport rates (J), and higher leaf soluble protein and chlorophyll. Younger wheatgrass plants maintained higher A, TPU, J, and VC than older plants did. Perennial wheat and rye differed from annual relatives in some but not all of these parameters. Differences in stomatal limitation were not involved, while differences in stomatal conductance (gs) became evident under drier conditions. CONCLUSIONS: This study demonstrates that some perennial cereal species can maintain higher midseason A than their annual crop relatives. These changes are not fully explainable by increased access to soil water and may reflect trade-offs between allocation to reproduction and to resource acquisition. We also found evidence for age-related changes in photosynthetic physiology in a herbaceous perennial plant.


Subject(s)
Photosynthesis , Plant Development , Plant Leaves/physiology , Seasons , Secale/physiology , Triticum/physiology , Carbon Dioxide/metabolism , Chlorophyll/metabolism , Ecosystem , Electron Transport , Nitrogen/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Stomata/physiology , Reproduction , Soil/chemistry , Triticum/growth & development , Triticum/metabolism , Water/physiology
13.
Proc Natl Acad Sci U S A ; 107(48): 20840-5, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-21098285

ABSTRACT

The Asian green revolution trebled grain yields through agrochemical intensification of monocultures. Associated environmental costs have subsequently emerged. A rapidly changing world necessitates sustainability principles be developed to reinvent these technologies and test them at scale. The need is particularly urgent in Africa, where ecosystems are degrading and crop yields have stagnated. An unprecedented opportunity to reverse this trend is unfolding in Malawi, where a 90% subsidy has ensured access to fertilization and improved maize seed, with substantive gains in productivity for millions of farmers. To test if economic and ecological sustainability could be improved, we preformed manipulative experimentation with crop diversity in a countrywide trial (n = 991) and at adaptive, local scales through a decade of participatory research (n = 146). Spatial and temporal treatments compared monoculture maize with legume-diversified maize that included annual and semiperennial (SP) growth habits in temporal and spatial combinations, including rotation, SP rotation, intercrop, and SP intercrop systems. Modest fertilizer intensification doubled grain yield compared with monoculture maize. Biodiversity improved ecosystem function further: SP rotation systems at half-fertilizer rates produced equivalent quantities of grain, on a more stable basis (yield variability reduced from 22% to 13%) compared with monoculture. Across sites, profitability and farmer preference matched: SP rotations provided twofold superior returns, whereas diversification of maize with annual legumes provided more modest returns. In this study, we provide evidence that in Africa, crop diversification can be effective at a countrywide scale, and that shrubby, grain legumes can enhance environmental and food security.


Subject(s)
Agriculture/methods , Biodiversity , Crops, Agricultural/growth & development , Africa , Fabaceae/growth & development , Soil , Zea mays/growth & development
14.
MethodsX ; 11: 102467, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38023314

ABSTRACT

The research and development needed to achieve sustainability of African smallholder agricultural and natural systems has led to a wide array of theoretical frameworks for conceptualising socioecological processes and functions. However, there are few analytical tools for spatio-temporal empirical approaches to implement use cases, which is a prerequisite to understand the performance of smallholder farms in the real world. This study builds a multi-agent system (MAS) to operationalise the Sustainable Agricultural Intensification (SAI) theoretical framework (MASSAI). This is an essential tool for spatio-temporal simulation of farm productivity to evaluate sustainability trends into the future at fine scale of a managed plot. MASSAI evaluates dynamic nutrient transfer using smallholder nutrient monitoring functions which have been calibrated with parameters from Malawi and the region. It integrates two modules: the Environmental (EM) and Behavioural (BM) ones.•The EM assess dynamic natural nutrient inputs (sedimentation and atmospheric deposition) and outputs (leaching, erosion and gaseous loses) as a product of bioclimatic factors and land use activities.•An integrated BM assess the impact of farmer decisions which influence farm-level inputs (fertilizer, manure, biological N fixation) and outputs (crop yields and associated grain).•A use case of input subsidies, common in Africa, markedly influence fertilizer access and the impact of different policy scenarios on decision-making, crop productivity, and nutrient balance are simulated. This is of use for empirical analysis smallholder's sustainability trajectories given the pro-poor development policy support.

15.
Glob Food Sec ; 37: 100684, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37351552

ABSTRACT

A growing urban population and dietary changes increased wheat import bills in Africa to 9% per year. Though wheat production in the continent has been increasing over the past decades, to varying degrees depending on regions, this has not been commensurate with the rapidly increasing demand for wheat. Analyses of wheat yield gaps show that there is ample opportunity to increase wheat production in Africa through improved genetics and agronomic practices. Doing so would reduce import dependency and increase wheat self-sufficiency at national level in many African countries. In view of the uncertainties revealed by the global COVID-19 pandemic, extreme weather events, and world security issues, national policies in Africa should re-consider the value of self-sufficiency in production of staple food crops, specifically wheat. This is particularly so for areas where water-limited wheat yield gaps can be narrowed through intensification on existing cropland and judicious expansion of rainfed and irrigated wheat areas. Increasing the production of other sources of calories (and proteins) should also be considered to reduce dependency on wheat imports.

16.
Mol Plant ; 16(10): 1590-1611, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37674314

ABSTRACT

Climate change poses daunting challenges to agricultural production and food security. Rising temperatures, shifting weather patterns, and more frequent extreme events have already demonstrated their effects on local, regional, and global agricultural systems. Crop varieties that withstand climate-related stresses and are suitable for cultivation in innovative cropping systems will be crucial to maximize risk avoidance, productivity, and profitability under climate-changed environments. We surveyed 588 expert stakeholders to predict current and novel traits that may be essential for future pearl millet, sorghum, maize, groundnut, cowpea, and common bean varieties, particularly in sub-Saharan Africa. We then review the current progress and prospects for breeding three prioritized future-essential traits for each of these crops. Experts predict that most current breeding priorities will remain important, but that rates of genetic gain must increase to keep pace with climate challenges and consumer demands. Importantly, the predicted future-essential traits include innovative breeding targets that must also be prioritized; for example, (1) optimized rhizosphere microbiome, with benefits for P, N, and water use efficiency, (2) optimized performance across or in specific cropping systems, (3) lower nighttime respiration, (4) improved stover quality, and (5) increased early vigor. We further discuss cutting-edge tools and approaches to discover, validate, and incorporate novel genetic diversity from exotic germplasm into breeding populations with unprecedented precision, accuracy, and speed. We conclude that the greatest challenge to developing crop varieties to win the race between climate change and food security might be our innovativeness in defining and boldness to breed for the traits of tomorrow.


Subject(s)
Climate Change , Fabaceae , Food Supply , Plant Breeding , Crops, Agricultural/genetics , Food Security
17.
Sci Total Environ ; 837: 155758, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35533863

ABSTRACT

In Africa, achieving sustainable agricultural intensification-increasing agricultural output without deleterious environmental impacts or converting more land for cultivation-will depend greatly on the actions of smallholder farmers and the policies that influence them. Whatever the future holds, the vast majority of farmers right now are small. Using multiple lines of evidence across disciplines, we examine trends in productivity of land and fertilizers in Malawi. Unfortunately, our effort uncovers disturbing trends that indicate intensification and sustainability are at risk. Two time-series datasets of satellite-based vegetative indices show a generally flat but highly variable trend in the productivity of agricultural land with epochs of steep decline. This is notably despite substantial (and successful) government effort to promote fertilizer use. We also compile evidence from several studies over three decades that use field-level data from farmers and suggest substantial declining maize yield response to fertilizer over time. These trends are consistent with soil degradation, the disappearance of fallow land and minimal investment in rehabilitation practices in densely populated areas, putting agricultural productivity in jeopardy. These signs of the harmful impacts that narrow approaches to productivity improvement may be having in Malawi are an early warning sign to policy makers in Malawi and around the continent that a more holistic and nuanced strategy is necessary for sustainable intensification in agriculture.


Subject(s)
Agriculture , Fertilizers , Farmers , Fertilizers/analysis , Humans , Malawi , Soil
18.
One Earth ; 5(7): 756-766, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35898653

ABSTRACT

Extreme events, such as those caused by climate change, economic or geopolitical shocks, and pest or disease epidemics, threaten global food security. The complexity of causation, as well as the myriad ways that an event, or a sequence of events, creates cascading and systemic impacts, poses significant challenges to food systems research and policy alike. To identify priority food security risks and research opportunities, we asked experts from a range of fields and geographies to describe key threats to global food security over the next two decades and to suggest key research questions and gaps on this topic. Here, we present a prioritization of threats to global food security from extreme events, as well as emerging research questions that highlight the conceptual and practical challenges that exist in designing, adopting, and governing resilient food systems. We hope that these findings help in directing research funding and resources toward food system transformations needed to help society tackle major food system risks and food insecurity under extreme events.

19.
Environ Sci Technol ; 45(5): 2013-20, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21348531

ABSTRACT

Concerns about energy security and climate change have increased biofuel demand, particularly ethanol produced from cellulosic feedstocks (e.g., food crop residues). A central challenge to cropping for cellulosic ethanol is the potential environmental damage from increased fertilizer use. Previous analyses have assumed that cropping for carbohydrate in residue will require the same amount of fertilizer as cropping for grain. Using (13)C nuclear magnetic resonance, we show that increases in biomass in response to fertilization are not uniform across biochemical classes (carbohydrate, protein, lipid, lignin) or tissues (leaf and stem, grain, reproductive support). Although corn grain responds vigorously and nonlinearly, corn residue shows only modest increases in carbohydrate yields in response to high levels of fertilization (25% increase with 202 kg N ha(-1)). Lignin yields in the residue increased almost twice as much as carbohydrate yields in response to nitrogen, implying that residue feedstock quality declines as more fertilizer is applied. Fertilization also increases the decomposability of corn residue, implying that soil carbon sequestration becomes less efficient with increased fertilizer. Our results suggest that even when corn is grown for grain, benefits of fertilization decline rapidly after the ecosystem's N demands are met. Heavy application of fertilizer yields minimal grain benefits and almost no benefits in residue carbohydrates, while degrading the cellulosic ethanol feedstock quality and soil carbon sequestration capacity.


Subject(s)
Agriculture/methods , Biofuels/statistics & numerical data , Ethanol , Fertilizers/statistics & numerical data , Nitrogen/analysis , Zea mays/growth & development , Agriculture/statistics & numerical data , Biomass , Carbon Sequestration , Cellulose , Fertilizers/analysis , Nitrogen/metabolism , Soil/chemistry , Zea mays/metabolism
20.
Ecol Appl ; 20(3): 648-62, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20437954

ABSTRACT

Soils in conventional agroecosystems are purposely held in a nitrogen (N)-saturated state to maximize crop yields. Planting winter annual cover crops when fields are usually fallow has been proposed to ameliorate N losses from soils. In this study we introduced winter annual cover crops into an N rate study with plots fertilized at 0, 34, 67, 101, 134, 168, and 202 kg N/ha in maize (Zea mays L.) to determine how winter annual cover crops affect yields, N2O and NO3- fluxes, and N pools. At the six-leaf stage and during flowering, incorporation of cover crop into soil resulted in a 30% reduction in maize biomass. Three weeks after fertilization, KCl-extractable soil mineral N was 75-87% lower in covercropped soils than in no-cover soils, indicating that N had been immobilized in the covercropped soils. At physiological maturity, there was no difference between cover and no-cover treatments in crop yield, which was maximized at 9 Mg/ha in 2006 and 7 Mg/ha in 2007. Where N rates exceed crop requirements, cover crop incorporation may reduce N exports as NO3- and N2O. Tighter N cycling in conventional agroecosystems could be fostered by matching N rates to the amount of N removed with grain and using N immobilization to retain N and support yields. If N immobilization is viewed as a means for efficient fertilizer N use rather than a process that decreases crop productivity, growers might be more willing to adopt cover-cropping practices.


Subject(s)
Agriculture , Nitrogen/metabolism , Soil/analysis , Zea mays/metabolism , Biomass , Nitrates/analysis , Nitrogen/analysis , Nitrous Oxide/analysis , Weather
SELECTION OF CITATIONS
SEARCH DETAIL