Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Chem Inf Model ; 61(6): 3058-3073, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34124899

ABSTRACT

ß-coronavirus (CoVs) alone has been responsible for three major global outbreaks in the 21st century. The current crisis has led to an urgent requirement to develop therapeutics. Even though a number of vaccines are available, alternative strategies targeting essential viral components are required as a backup against the emergence of lethal viral variants. One such target is the main protease (Mpro) that plays an indispensable role in viral replication. The availability of over 270 Mpro X-ray structures in complex with inhibitors provides unique insights into ligand-protein interactions. Herein, we provide a comprehensive comparison of all nonredundant ligand-binding sites available for SARS-CoV2, SARS-CoV, and MERS-CoV Mpro. Extensive adaptive sampling has been used to investigate structural conservation of ligand-binding sites using Markov state models (MSMs) and compare conformational dynamics employing convolutional variational auto-encoder-based deep learning. Our results indicate that not all ligand-binding sites are dynamically conserved despite high sequence and structural conservation across ß-CoV homologs. This highlights the complexity in targeting all three Mpro enzymes with a single pan inhibitor.


Subject(s)
COVID-19 , Peptide Hydrolases , Antiviral Agents , Binding Sites , Humans , Ligands , Protease Inhibitors , RNA, Viral , SARS-CoV-2
2.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: mdl-32879142

ABSTRACT

In prior studies, we delineated the landscape of neoantigens arising from nonsynonymous point mutations in a murine pancreatic cancer model, Panc02. We developed a peptide vaccine by targeting neoantigens predicted using a pipeline that incorporates the MHC binding algorithm NetMHC. The vaccine, when combined with immune checkpoint modulators, elicited a robust neoepitope-specific antitumor immune response and led to tumor clearance. However, only a small fraction of the predicted neoepitopes induced T cell immunity, similarly to that reported for neoantigen vaccines tested in clinical studies. While these studies have used binding affinities to MHC I as surrogates for T cell immunity, this approach does not include spatial information on the mutated residue that is crucial for TCR activation. Here, we investigate conformational alterations in and around the MHC binding groove induced by selected minimal neoepitopes, and we examine the influence of a given mutated residue as a function of its spatial position. We found that structural parameters, including the solvent-accessible surface area (SASA) of the neoepitope and the position and spatial configuration of the mutated residue within the sequence, can be used to improve the prediction of immunogenic neoepitopes for inclusion in cancer vaccines.


Subject(s)
Antigens, Neoplasm/chemistry , Cancer Vaccines/chemistry , Epitopes/chemistry , Molecular Docking Simulation , Animals , Antibody Affinity , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Cell Line, Tumor , Cells, Cultured , Epitopes/immunology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Immunogenicity, Vaccine , Male , Mice , Mice, Inbred C57BL , Mutation
3.
Neuron ; 101(3): 429-443.e4, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30578106

ABSTRACT

Normal vascular development includes the formation and specification of arteries, veins, and intervening capillaries. Vein of Galen malformations (VOGMs) are among the most common and severe neonatal brain arterio-venous malformations, shunting arterial blood into the brain's deep venous system through aberrant direct connections. Exome sequencing of 55 VOGM probands, including 52 parent-offspring trios, revealed enrichment of rare damaging de novo mutations in chromatin modifier genes that play essential roles in brain and vascular development. Other VOGM probands harbored rare inherited damaging mutations in Ephrin signaling genes, including a genome-wide significant mutation burden in EPHB4. Inherited mutations showed incomplete penetrance and variable expressivity, with mutation carriers often exhibiting cutaneous vascular abnormalities, suggesting a two-hit mechanism. The identified mutations collectively account for ∼30% of studied VOGM cases. These findings provide insight into disease biology and may have clinical implications for risk assessment.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Mutation , Vein of Galen Malformations/genetics , Ephrins/metabolism , Female , Humans , Male , Membrane Glycoproteins/genetics , Metalloendopeptidases/genetics , Pedigree , Penetrance , Receptor, EphB4/genetics , Signal Transduction , Vein of Galen Malformations/pathology
SELECTION OF CITATIONS
SEARCH DETAIL