Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters

Publication year range
1.
J Physiol ; 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37983617

ABSTRACT

Information concepts from physics, mathematics and computer science support many areas of research in biology. Their focus is on objective information, which provides correlations and patterns related to objects, processes, marks and signals. In these approaches only the quantitative aspects of the meaning of the information is relevant. In other areas of biology, 'meaningful information', which is subjective in nature, relies on the physiology of the organism's sensory organs and on the interpretation of the perceived signals, which is then translated into action, even if this is only mental (in brained animals). Information is involved, in terms of both amount and quality. Here we contextualize and review the main theories that deal with 'meaningful-information' at a molecular level from different areas of natural language research, namely biosemiotics, code-biology, biocommunication and biohermeneutics. As this information mediates between the organism and its environment, we emphasize how such theories compare with the neo-Darwinian treatment of genetic information, and how they project onto the rapid evolution of RNA viruses.

2.
J Physiol ; 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37818797

ABSTRACT

Studies with RNA enzymes (ribozymes) and protein enzymes have identified certain structural elements that are present in some cellular mRNAs and viral RNAs. These elements do not share a primary structure and, thus, are not phylogenetically related. However, they have common (secondary/tertiary) structural folds that, according to some lines of evidence, may have an ancient and common origin. The term 'mRNA archaeology' has been coined to refer to the search for such structural/functional relics that may be informative of early evolutionary developments in the cellular and viral worlds and have lasted to the present day. Such identified RNA elements may have developed as biological signals with structural and functional relevance (as if they were buried objects with archaeological value), and coexist with the standard linear information of nucleic acid molecules that is translated into proteins. However, there is a key difference between the methods that extract information from either the primary structure of mRNA or the signals provided by secondary and tertiary structures. The former (sequence comparison and phylogenetic analysis) requires strict continuity of the material vehicle of information during evolution, whereas the archaeological method does not require such continuity. The tools of RNA archaeology (including the use of ribozymes and enzymes to investigate the reactivity of the RNA elements) establish links between the concepts of communication and language theories that have not been incorporated into knowledge of virology, as well as experimental studies on the search for functionally relevant RNA structures.

3.
Antimicrob Agents Chemother ; 67(4): e0170322, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36975844

ABSTRACT

Antiviral compounds targeting cellular metabolism are part of the therapeutic arsenal to control the spread of virus infection, either as sole treatment or in combination with direct-acting antivirals (DAA) or vaccines. Here, we describe the effect of two of them, lauryl gallate (LG) and valproic acid (VPA) both exhibiting a wide antiviral spectrum, against infection by coronaviruses such as HCoV-229E, HCoV-OC43, and SARS-CoV-2. A consistent 2 to 4-log-decrease in virus yields was observed in the presence of each antiviral, with an average IC50 value of 1.6 µM for LG and 7.2 mM for VPA. Similar levels of inhibition were observed when adding the drug 1 h before adsorption, at the time of infection or 2 h after infection, supporting a postvirus entry mechanism of action. The specificity of the antiviral effect of LG against SARS-CoV-2, relative to other related compounds such as gallic acid (G) and epicatechin gallate (ECG), predicted to be better inhibitors according to in silico studies, was also demonstrated. The combined addition of LG, VPA, and remdesivir (RDV), a DAA with a proven effect against human coronaviruses, resulted in a robust synergistic effect between LG and VPA, and to a lesser extent between the other drug combinations. These findings reinforce the interest of these wide antiviral spectrum host-targeted compounds as a first line of defense against viral diseases or as a vaccine complement to minimize the gap in antibody-mediated protection evoked by vaccines, either in the case of SARS-CoV-2 or for other possible emerging viruses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Coronavirus OC43, Human , Hepatitis C, Chronic , Humans , Antiviral Agents/pharmacology , SARS-CoV-2
4.
Int J Mol Sci ; 25(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203638

ABSTRACT

Modulation of the allergic immune response through alternative therapies is a field of study that aims to address allergic reactions differently from traditional approaches. These therapies encompass the utilization of natural functional foods, which have been observed to exert an influence on the immune response, thus mitigating the severity of allergies. Indeed, some studies suggest that the incorporation of these nutraceuticals can regulate immune function, leading to a reduction in histamine release and subsequent alleviation of allergic symptoms. Moreover, certain herbs and dietary supplements, such as curcumin, are believed to possess anti-inflammatory properties, which may serve to moderate allergic responses. Although the results remain somewhat mixed and require further research, these alternative therapies exhibit the potential to impact the allergic immune response, thereby providing complementary options to conventional treatments. Therefore, in this review, we aim to provide an updated account of functional foods capable of modulating the immune response to allergies. In that sense, the review delves into functional foods sourced from plants (phytochemicals), animals, and marine algae. Emphasis is placed on their potential application in the treatment of allergic disorders. It also provides an overview of how these foods can be effectively utilized as functional foods. Additionally, it explores the molecular mechanisms and scientific validity of various bioactive natural compounds in the management of allergies.


Subject(s)
Functional Food , Hypersensitivity , Animals , Hypersensitivity/drug therapy , Dietary Supplements , Histamine Release , Immunity
5.
Molecules ; 26(16)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34443302

ABSTRACT

An approach based on a dendrimer display of B- and T-cell epitopes relevant for antibody induction has been shown to be effective as a foot-and-mouth disease (FMD) vaccine. B2T dendrimers combining two copies of the major FMD virus (FMDV) type O B-cell epitope (capsid proteinVP1 (140-158)) covalently linked to a heterotypic T-cell epitope from non-structural protein 3A (21-35), henceforth B2T-3A, has previously been shown to elicit high neutralizing antibody (nAb) titers and IFN-γ-producing cells in both mice and pigs. Here, we provide evidence that the B- and T-cell epitopes need to be tethered to a single molecular platform for successful T-cell help, leading to efficient nAb induction in mice. In addition, mice immunized with a non-covalent mixture of B2T-3A dendrimers containing the B-cell epitopes of FMDV types O and C induced similarly high nAb levels against both serotypes, opening the way for a multivalent vaccine platform against a variety of serologically different FMDVs. These findings are relevant for the design of vaccine strategies based on B- and T-cell epitope combinations.


Subject(s)
Dendrimers/chemistry , Epitopes, T-Lymphocyte/immunology , Foot-and-Mouth Disease Virus/immunology , Peptides/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitopes, B-Lymphocyte/immunology , Female , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/virology , Mice , Species Specificity , Swine
6.
PLoS Pathog ; 14(6): e1007135, 2018 06.
Article in English | MEDLINE | ID: mdl-29958302

ABSTRACT

The RNA helicase LGP2 (Laboratory of Genetics and Physiology 2) is a non-signaling member of the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), whose pivotal role on innate immune responses against RNA viruses is being increasingly uncovered. LGP2 is known to work in synergy with melanoma differentiation-associated gene 5 (MDA5) to promote the antiviral response induced by picornavirus infection. Here, we describe the activity of the foot-and-mouth disease virus (FMDV) Leader protease (Lpro) targeting LGP2 for cleavage. When LGP2 and Lpro were co-expressed, cleavage products were observed in an Lpro dose-dependent manner while co-expression with a catalytically inactive Lpro mutant had no effect on LGP2 levels or pattern. We further show that Lpro localizes and immunoprecipitates with LGP2 in transfected cells supporting their interaction within the cytoplasm. Evidence of LGP2 proteolysis was also detected during FMDV infection. Moreover, the inhibitory effect of LGP2 overexpression on FMDV growth observed was reverted when Lpro was co-expressed, concomitant with lower levels of IFN-ß mRNA and antiviral activity in those cells. The Lpro target site in LGP2 was identified as an RGRAR sequence in a conserved helicase motif whose replacement to EGEAE abrogated LGP2 cleavage by Lpro. Taken together, these data suggest that LGP2 cleavage by the Leader protease of aphthoviruses may represent a novel antagonistic mechanism for immune evasion.


Subject(s)
Endopeptidases/metabolism , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/virology , Immune Evasion/immunology , Immunity, Innate/immunology , RNA Helicases/metabolism , Animals , Cells, Cultured , Chlorocebus aethiops , Cricetinae , Endopeptidases/genetics , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/pathology , Foot-and-Mouth Disease Virus/enzymology , HEK293 Cells , Humans , RNA Helicases/genetics , RNA Helicases/immunology , Vero Cells
7.
J Virol ; 92(20)2018 10 15.
Article in English | MEDLINE | ID: mdl-30068642

ABSTRACT

Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop ß9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop ß9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.


Subject(s)
Foot-and-Mouth Disease Virus/enzymology , Mutagenesis , RNA-Dependent RNA Polymerase/metabolism , Amino Acid Substitution , Animals , Antiviral Agents/metabolism , Cell Line , Cricetinae , Crystallography, X-Ray , Nuclear Localization Signals , RNA, Viral/biosynthesis , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , Ribavirin/metabolism
8.
Mol Pharm ; 15(5): 1735-1745, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29140707

ABSTRACT

The present work investigates the modulation of grapefruit flavonoid naringenin over liver X receptor alpha (LXRα) and its target genes in THP-1 macrophages, focusing on AMP-activated protein kinase (AMPK) implication. Naringenin induced LXRα at mRNA and protein levels besides influencing the expression of LXRα target genes ABCA1, ABCG1 (ATP-binding cassette A1 and G1), and SREBP1c (sterol response element binding protein 1c) in THP-1 macrophages. The increased LXRα mRNA and protein expression was reverted when AMPK was inhibited by its chemical inhibitor, compound C or by transfection with AMPK α1 and α2 siRNA. Naringenin treatments were also able to promote reverse cholesterol transport in THP-1 cells, which is in line with the increase in the ABCA1 and ABCG1 expression found. Treatments with this flavonoid also inhibited cell migration in THP-1 cells. In conclusion, LXRα and its target genes are up-regulated by naringenin in an AMPK dependent manner in human macrophages. The enhancement in the expression of genes involved in cholesterol efflux may reveal a new mechanism by which this polyphenol can prevent atherosclerosis and foam cell progression.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Citrus paradisi/chemistry , Flavanones/pharmacology , Flavonoids/pharmacology , Liver X Receptors/metabolism , Macrophages/drug effects , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Biological Transport/drug effects , Cell Line , Cell Movement/drug effects , Cholesterol/metabolism , Foam Cells/drug effects , Foam Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Macrophages/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
9.
J Virol ; 90(21): 9725-9732, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27535044

ABSTRACT

Equine rhinitis A virus (ERAV) is a picornavirus associated with respiratory disease in horses and is genetically closely related to foot-and-mouth disease virus (FMDV), the prototype aphthovirus. ERAV has recently gained interest as an FMDV alternative for the study of aphthovirus biology, including cell entry and uncoating or antiviral testing. As described for FMDV, current data support that acidic pH inside cellular endosomes triggers ERAV uncoating. In order to provide further insights into aphthovirus uncoating mechanism, we have isolated a panel of ERAV mutants with altered acid sensitivity and that differed on their degree of sensitivity to the inhibition of endosome acidification. These results provide functional evidence of the involvement of acidic pH on ERAV uncoating within endosomes. Remarkably, all amino acid substitutions found in acid-labile or acid-resistant ERAVs were located in the capsid protein VP3, indicating that this protein plays a pivotal role for the control of pH stability of the ERAV capsid. Moreover, all amino acid substitutions mapped at the intraprotomer interface between VP3 and VP2 or between VP3 and the N terminus of VP1. These results expand our knowledge on the regions that regulate the acid stability of aphthovirus capsid and should be taken into account when using ERAV as a surrogate of FMDV. IMPORTANCE: The viral capsid constitutes a sort of dynamic nanomachine that protects the viral genome against environmental assaults while accomplishing important functions such as receptor attachment for viral entry or genome release. We have explored the molecular determinants of aphthovirus capsid stability by isolating and characterizing a panel of equine rhinitis A virus mutants that differed on their acid sensitivity. All the mutations were located within a specific region of the capsid, the intraprotomer interface among capsid proteins, thus providing new insights into the regions that control the acid stability of aphthovirus capsid. These findings could positively contribute to the development of antiviral approaches targeting aphthovirus uncoating or the refinement of vaccine strategies based on capsid stabilization.


Subject(s)
Acids/metabolism , Aphthovirus/genetics , Capsid Proteins/genetics , Horses/virology , Amino Acid Substitution/genetics , Animals , Antiviral Agents/pharmacology , Aphthovirus/drug effects , Capsid/drug effects , Endosomes/virology , Foot-and-Mouth Disease Virus/drug effects , Genome, Viral/genetics , Hydrogen-Ion Concentration , Mutation/genetics , Picornaviridae Infections/drug therapy , Picornaviridae Infections/virology , Virus Internalization/drug effects
10.
J Lipid Res ; 57(3): 422-32, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26764042

ABSTRACT

Flaviviruses, such as the dengue virus and the West Nile virus (WNV), are arthropod-borne viruses that represent a global health problem. The flavivirus lifecycle is intimately connected to cellular lipids. Among the lipids co-opted by flaviviruses, we have focused on SM, an important component of cellular membranes particularly enriched in the nervous system. After infection with the neurotropic WNV, mice deficient in acid sphingomyelinase (ASM), which accumulate high levels of SM in their tissues, displayed exacerbated infection. In addition, WNV multiplication was enhanced in cells from human patients with Niemann-Pick type A, a disease caused by a deficiency of ASM activity resulting in SM accumulation. Furthermore, the addition of SM to cultured cells also increased WNV infection, whereas treatment with pharmacological inhibitors of SM synthesis reduced WNV infection. Confocal microscopy analyses confirmed the association of SM with viral replication sites within infected cells. Our results unveil that SM metabolism regulates flavivirus infection in vivo and propose SM as a suitable target for antiviral design against WNV.


Subject(s)
Host-Pathogen Interactions , Sphingomyelins/metabolism , West Nile virus/physiology , Animals , Brain/metabolism , Brain/virology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Female , Fibroblasts/metabolism , Fibroblasts/virology , Gene Knockout Techniques , Humans , Intracellular Membranes/metabolism , Intracellular Membranes/virology , Male , Mice , Mice, Inbred C57BL , Niemann-Pick Diseases/pathology , Sphingomyelin Phosphodiesterase/deficiency , Sphingomyelin Phosphodiesterase/genetics , Virus Replication
11.
Antimicrob Agents Chemother ; 60(1): 307-15, 2016 01.
Article in English | MEDLINE | ID: mdl-26503654

ABSTRACT

West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bite of mosquitoes that causes meningitis and encephalitis in humans, horses, and birds. Several studies have highlighted that flavivirus infection is highly dependent on cellular lipids for virus replication and infectious particle biogenesis. The first steps of lipid synthesis involve the carboxylation of acetyl coenzyme A (acetyl-CoA) to malonyl-CoA that is catalyzed by the acetyl-CoA carboxylase (ACC). This makes ACC a key enzyme of lipid synthesis that is currently being evaluated as a therapeutic target for different disorders, including cancers, obesity, diabetes, and viral infections. We have analyzed the effect of the ACC inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) on infection by WNV. Lipidomic analysis of TOFA-treated cells confirmed that this drug reduced the cellular content of multiple lipids, including those directly implicated in the flavivirus life cycle (glycerophospholipids, sphingolipids, and cholesterol). Treatment with TOFA significantly inhibited the multiplication of WNV in a dose-dependent manner. Further analysis of the antiviral effect of this drug showed that the inhibitory effect was related to a reduction of viral replication. Furthermore, treatment with another ACC inhibitor, 3,3,14,14-tetramethylhexadecanedioic acid (MEDICA 16), also inhibited WNV infection. Interestingly, TOFA and MEDICA 16 also reduced the multiplication of Usutu virus (USUV), a WNV-related flavivirus. These results point to the ACC as a druggable cellular target suitable for antiviral development against WNV and other flaviviruses.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Furans/pharmacology , Hypolipidemic Agents/pharmacology , Lipid Metabolism/drug effects , Palmitic Acids/pharmacology , West Nile virus/drug effects , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Cell Line , Chlorocebus aethiops , Cholesterol/biosynthesis , Gene Expression , Glycerophospholipids/antagonists & inhibitors , Glycerophospholipids/biosynthesis , HeLa Cells , Host-Pathogen Interactions/drug effects , Humans , Mice , Neurons/drug effects , Neurons/enzymology , Neurons/virology , Sphingolipids/antagonists & inhibitors , Sphingolipids/biosynthesis , Vero Cells , Virus Replication/drug effects , West Nile virus/growth & development , West Nile virus/metabolism
12.
J Virol ; 89(10): 5633-42, 2015 May.
Article in English | MEDLINE | ID: mdl-25762735

ABSTRACT

UNLABELLED: The picornavirus foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. The FMDV capsid is highly acid labile, and viral particles lose infectivity due to their disassembly at pH values slightly below neutrality. This acid sensitivity is related to the mechanism of viral uncoating and genome penetration from endosomes. In this study, we have analyzed the molecular basis of FMDV acid-induced disassembly by isolating and characterizing a panel of novel FMDV mutants differing in acid sensitivity. Amino acid replacements altering virion stability were preferentially distributed in two different regions of the capsid: the N terminus of VP1 and the pentameric interface. Even more, the acid labile phenotype induced by a mutation located at the pentameric interface in VP3 could be compensated by introduction of an amino acid substitution in the N terminus of VP1. These results indicate that the acid sensitivity of FMDV can be considered a multifactorial trait and that virion stability is the fine-tuned product of the interaction between residues from different capsid proteins, in particular those located within the N terminus of VP1 or close to the pentameric interface. IMPORTANCE: The viral capsid protects the viral genome from environmental factors and contributes to virus dissemination and infection. Thus, understanding of the molecular mechanisms that modulate capsid stability is of interest for the basic knowledge of the biology of viruses and as a tool to improve the stability of conventional vaccines based on inactivated virions or empty capsids. Using foot-and-mouth disease virus (FMDV), which displays a capsid with extreme acid sensitivity, we have performed a genetic study to identify the molecular determinants involved in capsid stability. A panel of FMDV mutants with differential sensitivity to acidic pH was generated and characterized, and the results showed that two different regions of FMDV capsid contribute to modulating viral particle stability. These results provide new insights into the molecular mechanisms of acid-mediated FMDV uncoating.


Subject(s)
Capsid Proteins/genetics , Capsid Proteins/physiology , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/physiology , Amino Acid Substitution , Animals , Capsid Proteins/chemistry , Cell Line , Foot-and-Mouth Disease Virus/pathogenicity , Genome, Viral , Hydrogen-Ion Concentration , Models, Molecular , Mutagenesis, Site-Directed , Protein Interaction Domains and Motifs , Protein Stability , Protein Structure, Quaternary , Virion/genetics , Virion/physiology , Virus Uncoating
13.
J Virol ; 89(13): 6848-59, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25903341

ABSTRACT

UNLABELLED: The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop ß9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE: The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid substitutions at this polymerase region can impair the transport of 3D to the nucleus, reduce 3D binding to RNA, and alter the relative incorporation of standard nucleoside monophosphate versus ribavirin monophosphate. Structural data reveal that the conformational changes in this region, forming part of the template channel entry, would be involved in nucleotide discrimination. The results have implications for the understanding of viral polymerase function and for lethal mutagenesis mechanisms.


Subject(s)
Antigens, Viral/chemistry , Antigens, Viral/metabolism , Foot-and-Mouth Disease Virus/enzymology , Nuclear Localization Signals , Nucleotides/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Substitution , Antigens, Viral/genetics , Crystallography, X-Ray , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Protein Binding , Protein Conformation , RNA/metabolism , Viral Nonstructural Proteins/genetics
14.
Eur J Nutr ; 55(8): 2485-2492, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26715521

ABSTRACT

PURPOSE: Oxysterols are cholesterol-oxygenated derivatives generated in the organism and also present in foods because of cholesterol oxidation during processing and storage. They are the natural ligands of liver X receptors (LXRs) and are generally recognized as hypocholesterolemic and anti-inflammatory molecules although this latter property is still controversial. Most oxysterol studies have been performed in macrophages, whereas the effects of oxysterols in neutrophils are poorly known. In this study, human neutrophils were exposed to two different oxysterols, 7-keto-cholesterol (7-k-chol) and 25-hydroxy-cholesterol (25-OH-chol), and their possible participation in inflammatory process was evaluated. METHODS: Human neutrophils were incubated with 7-k-chol and 25-OH-chol, and ROS production, translocation of the NADPH oxidase cytosolic components, hemoxygenase-1 (HO-1) expression and lysozyme secretion were analyzed. RESULTS: An increase in ROS production was observed within a short period of time (minutes) with both molecules. These oxysterols also stimulated the cellular membrane translocation of the NADPH oxidase cytosolic components, p47phox and p67phox. On the other hand, HO-1 expression, a cytoprotector enzyme, is inhibited in human neutrophils upon oxysterols treatment. Moreover, both oxysterols were associated with high lysozyme enzyme secretion at 5 and 18 h of incubation. CONCLUSIONS: The present paper describes for the first time that two oxysterols (7-k-chol and 25-OH-chol) enhance the ROS production within a short period of time in human neutrophils, stimulate the translocation of the cytosolic components of NADPH oxidase to the cellular membrane and increase lysozyme secretion. These data suggest that both oxysterols are able to activate pro-inflammatory effects in human neutrophils which contrasts with the role assigned to the oxysterols when they act through LXR at long time of incubation.


Subject(s)
Hydroxycholesterols/pharmacology , Ketocholesterols/pharmacology , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Cell Membrane/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Muramidase/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Neutrophils/cytology , Phosphoproteins/genetics , Phosphoproteins/metabolism
15.
J Virol ; 88(5): 3039-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352460

ABSTRACT

The foot-and-mouth disease virus (FMDV) capsid is highly acid labile, but introduction of amino acid replacements, including an N17D change in VP1, can increase its acid resistance. Using mutant VP1 N17D as a starting point, we isolated a virus with higher acid resistance carrying an additional replacement, VP2 H145Y, in a residue highly conserved among picornaviruses, which has been proposed to be responsible for VP0 cleavage. This mutant provides an example of the multifunctionality of picornavirus capsid residues.


Subject(s)
Amino Acid Substitution , Capsid Proteins/genetics , Capsid Proteins/metabolism , Foot-and-Mouth Disease Virus/physiology , Mutation , Animals , Capsid Proteins/chemistry , Cell Line , Cricetinae , Histidine , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation , Protein Multimerization , Proteolysis , Tyrosine
16.
J Virol ; 88(20): 12041-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25122799

ABSTRACT

West Nile virus (WNV) is an emerging zoonotic mosquito-borne flavivirus responsible for outbreaks of febrile illness and meningoencephalitis. The replication of WNV takes place on virus-modified membranes from the endoplasmic reticulum of the host cell, and virions acquire their envelope by budding into this organelle. Consistent with this view, the cellular biology of this pathogen is intimately linked to modifications of the intracellular membranes, and the requirement for specific lipids, such as cholesterol and fatty acids, has been documented. In this study, we evaluated the impact of WNV infection on two important components of cellular membranes, glycerophospholipids and sphingolipids, by mass spectrometry of infected cells. A significant increase in the content of several glycerophospholipids (phosphatidylcholine, plasmalogens, and lysophospholipids) and sphingolipids (ceramide, dihydroceramide, and sphingomyelin) was noticed in WNV-infected cells, suggesting that these lipids have functional roles during WNV infection. Furthermore, the analysis of the lipid envelope of WNV virions and recombinant virus-like particles revealed that their envelopes had a unique composition. The envelopes were enriched in sphingolipids (sphingomyelin) and showed reduced levels of phosphatidylcholine, similar to sphingolipid-enriched lipid microdomains. Inhibition of neutral sphingomyelinase (which catalyzes the hydrolysis of sphingomyelin into ceramide) by either pharmacological approaches or small interfering RNA-mediated silencing reduced the release of flavivirus virions as well as virus-like particles, suggesting a role of sphingomyelin-to-ceramide conversion in flavivirus budding and confirming the importance of sphingolipids in the biogenesis of WNV. Importance: West Nile virus (WNV) is a neurotropic flavivirus spread by mosquitoes that can infect multiple vertebrate hosts, including humans. There is no specific vaccine or therapy against this pathogen licensed for human use. Since the multiplication of this virus is associated with rearrangements of host cell membranes, we analyzed the effect of WNV infection on different cellular lipids that constitute important membrane components. The levels of multiple lipid species were increased in infected cells, pointing to the induction of major alterations of cellular lipid metabolism by WNV infection. Interestingly, certain sphingolipids, which were increased in infected cells, were also enriched in the lipid envelope of the virus, thus suggesting a potential role during virus assembly. We further verified the role of sphingolipids in the production of WNV by means of functional analyses. This study provides new insight into the formation of flavivirus infectious particles and the involvement of sphingolipids in the WNV life cycle.


Subject(s)
Membrane Lipids/metabolism , Sphingolipids/metabolism , West Nile virus/metabolism , HeLa Cells , Humans , Mass Spectrometry , Microscopy, Fluorescence
17.
Eur J Nutr ; 53(8): 1707-17, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24722912

ABSTRACT

PURPOSE: Regulation of liver X receptors (LXRs) is essential for cholesterol homeostasis and inflammation. The present study was conducted to determine whether oleic acid (OA) could regulate mRNA expression of LXRα and LXRα-regulated genes and to assess the potential promotion of oxidative stress by OA in neutrophils. METHODS: Human neutrophils were treated with OA at different doses and LXR target gene expression, oxidative stress production, lipid efflux and inflammation state were analyzed. RESULTS: We describe that mRNA synthesis of both LXRα and ABCA1 (a reverse cholesterol transporter) was induced by OA in human neutrophils. This fatty acid enhanced the effects of LXR ligands on ABCA1 and LXR expression, but it decreased the mRNA levels of sterol regulatory element-binding protein 1c (a transcription factor that regulates the synthesis of triglycerides). Although OA elicited a slight oxidative stress in the short term (15-30 min) in neutrophils, it is unlikely that this is relevant for the modulation of transcription in our experimental conditions, which involve longer incubation time (i.e., 6 h). Of physiological importance is our finding that OA depresses intracellular lipid levels and that markers of inflammation, such as ERK1/2 and p38 mitogen-activated protein kinase phosphorylation, were decreased by OA treatment. In addition, 200 µM OA reduced the migration of human neutrophils, another marker of the inflammatory state. However, OA did not affect lipid peroxidation induced by pro-oxidant agents. CONCLUSIONS: This work presents for the first time evidence that human neutrophils are highly sensitive to OA and provides novel data in support of a protective role of this monounsaturated acid against the activation of neutrophils during inflammation.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Neutrophils/drug effects , Oleic Acid/pharmacology , Orphan Nuclear Receptors/genetics , Sterol Regulatory Element Binding Protein 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Humans , Lipid Metabolism/drug effects , Liver X Receptors , Neutrophils/metabolism , Orphan Nuclear Receptors/metabolism , Oxidative Stress/drug effects , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription Factors/metabolism , Triglycerides/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Biomed Pharmacother ; 177: 117056, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38945082

ABSTRACT

Inflammation and immune responses are intricately intertwined processes crucial for maintaining homeostasis and combating against pathogens. These processes involve complex signaling pathways, notably the Nuclear Factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) pathways, which play crucial roles. Sulforaphane (SFN), a nutraceutic, has emerged as a potential regulator of NF-κB and MAPK signaling pathways, exhibiting anti-inflammatory properties. However, limited knowledge exists regarding SFN's effects on immune cell modulation. This study aimed to assess the immunomodulatory capacity of SFN pretreatment in human dendritic cells (DCs), followed by exposure to a chronic inflammatory environment induced by lipopolysaccharide. SFN pretreatment was found to inhibit the NF-κB and MAPK signaling pathways, resulting in phenotypic changes in DCs characterized by a slight reduction in the expression of surface markers, as well as a decrease of TNF-α/IL-10 ratio. Additionally, SFN pretreatment enhanced the proliferation of Treg-cells and promoted the production of IL-10 by B-cells before exposure to the chronic inflammatory environment. Furthermore, these changes in DCs were found to be influenced by the inhibition of NF-κB and MAPK pathways (specifically p38 MAPK and JNK), suggesting that these pathways may play a role in the regulation of the differentiation of adaptive immune responses (proliferation of T- and IL-10-producing regulatory-cells), prior to SFN pretreatment. Our findings suggest that SFN pretreatment may induce a regulatory response by inhibiting NF-κB and MAPK signaling pathways in an inflammatory environment. SFN could be considered a promising strategy for utilizing functional foods to protect against inflammation and develop immunoregulatory interventions.

19.
Vaccines (Basel) ; 12(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38400148

ABSTRACT

Dendritic cells (DCs) serve as professional antigen-presenting cells (APC) bridging innate and adaptive immunity, playing an essential role in triggering specific cellular and humoral responses against tumor and infectious antigens. Consequently, various DC-based antitumor therapeutic strategies have been developed, particularly vaccines, and have been intensively investigated specifically in the context of acute myeloid leukemia (AML). This hematological malignancy mainly affects the elderly population (those aged over 65), which usually presents a high rate of therapeutic failure and an unfavorable prognosis. In this review, we examine the current state of development and progress of vaccines in AML. The findings evidence the possible administration of DC-based vaccines as an adjuvant treatment in AML following initial therapy. Furthermore, the therapy demonstrates promising outcomes in preventing or delaying tumor relapse and exhibits synergistic effects when combined with other treatments during relapses or disease progression. On the other hand, the remarkable success observed with RNA vaccines for COVID-19, delivered in lipid nanoparticles, has revealed the efficacy and effectiveness of these types of vectors, prompting further exploration and their potential application in AML, as well as other neoplasms, loading them with tumor RNA.

20.
J Virol ; 86(20): 11013-23, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22787230

ABSTRACT

Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, virulence, and host range. In other picornaviruses, homodimerization of 3A has been shown to be relevant for its biological activity. In this work, FMDV 3A homodimerization was evidenced by an in situ protein fluorescent ligation assay. A molecular model of the FMDV 3A protein, derived from the nuclear magnetic resonance (NMR) structure of the poliovirus 3A protein, predicted a hydrophobic interface spanning residues 25 to 44 as the main determinant for 3A dimerization. Replacements L38E and L41E, involving charge acquisition at residues predicted to contribute to the hydrophobic interface, reduced the dimerization signal in the protein ligation assay and prevented the detection of dimer/multimer species in both transiently expressed 3A proteins and in synthetic peptides reproducing the N terminus of 3A. These replacements also led to production of infective viruses that replaced the acidic residues introduced (E) by nonpolar amino acids, indicating that preservation of the hydrophobic interface is essential for virus replication. Replacements that favored (Q44R) or impaired (Q44D) the polar interactions predicted between residues Q44 and D32 did not abolish dimer formation of transiently expressed 3A, indicating that these interactions are not critical for 3A dimerization. Nevertheless, while Q44R led to recovery of viruses that maintained the mutation, Q44D resulted in selection of infective viruses with substitution D44E with acidic charge but with structural features similar to those of the parental virus, suggesting that Q44 is involved in functions other than 3A dimerization.


Subject(s)
Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/pathogenicity , Foot-and-Mouth Disease/virology , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , Foot-and-Mouth Disease/pathology , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Mice , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation , Protein Multimerization , Swine , Vero Cells , Viral Core Proteins/chemistry , Viral Core Proteins/genetics , Viral Core Proteins/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL