Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur Respir J ; 61(3)2023 03.
Article in English | MEDLINE | ID: mdl-36396142

ABSTRACT

BACKGROUND: The primary aim of our study was to investigate the association between intubation timing and hospital mortality in critically ill patients with coronavirus disease 2019 (COVID-19)-associated respiratory failure. We also analysed both the impact of such timing throughout the first four pandemic waves and the influence of prior noninvasive respiratory support on outcomes. METHODS: This is a secondary analysis of a multicentre, observational and prospective cohort study that included all consecutive patients undergoing invasive mechanical ventilation due to COVID-19 from across 58 Spanish intensive care units (ICUs) participating in the CIBERESUCICOVID project. The study period was between 29 February 2020 and 31 August 2021. Early intubation was defined as that occurring within the first 24 h of ICU admission. Propensity score matching was used to achieve a balance across baseline variables between the early intubation cohort and those patients who were intubated after the first 24 h of ICU admission. Differences in outcomes between early and delayed intubation were also assessed. We performed sensitivity analyses to consider a different time-point (48 h from ICU admission) for early and delayed intubation. RESULTS: Of the 2725 patients who received invasive mechanical ventilation, a total of 614 matched patients were included in the analysis (307 for each group). In the unmatched population, there were no differences in mortality between the early and delayed groups. After propensity score matching, patients with delayed intubation presented higher hospital mortality (27.3% versus 37.1%; p=0.01), ICU mortality (25.7% versus 36.1%; p=0.007) and 90-day mortality (30.9% versus 40.2%; p=0.02) compared with the early intubation group. Very similar findings were observed when we used a 48-h time-point for early or delayed intubation. The use of early intubation decreased after the first wave of the pandemic (72%, 49%, 46% and 45% in the first, second, third and fourth waves, respectively; first versus second, third and fourth waves p<0.001). In both the main and sensitivity analyses, hospital mortality was lower in patients receiving high-flow nasal cannula (HFNC) (n=294) who were intubated earlier. The subgroup of patients undergoing noninvasive ventilation (n=214) before intubation showed higher mortality when delayed intubation was set as that occurring after 48 h from ICU admission, but not when after 24 h. CONCLUSIONS: In patients with COVID-19 requiring invasive mechanical ventilation, delayed intubation was associated with a higher risk of hospital mortality. The use of early intubation significantly decreased throughout the course of the pandemic. Benefits of such an approach occurred more notably in patients who had received HFNC.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Insufficiency , Humans , Prospective Studies , Pandemics , Intubation, Intratracheal/adverse effects , Respiration, Artificial/adverse effects , Respiratory Insufficiency/therapy , Respiratory Insufficiency/etiology , Intensive Care Units
2.
J Med Virol ; 95(8): e29010, 2023 08.
Article in English | MEDLINE | ID: mdl-37537755

ABSTRACT

The aim of this study is to investigate the effectiveness of prolonged versus standard course oseltamivir treatment among critically ill patients with severe influenza. A retrospective study of a prospectively collected database including adults with influenza infection admitted to 184 intensive care units (ICUs) in Spain from 2009 to 2018. Prolonged oseltamivir was defined if patients received the treatment beyond 5 days, whereas the standard-course group received oseltamivir for 5 days. The primary outcome was all-cause ICU mortality. Propensity score matching (PSM) was constructed, and the outcome was investigated through Cox regression and RCSs. Two thousand three hundred and ninety-seven subjects were included, of whom 1943 (81.1%) received prolonged oseltamivir and 454 (18.9%) received standard treatment. An optimal full matching algorithm was performed by matching 2171 patients, 1750 treated in the prolonged oseltamivir group and 421 controls in the standard oseltamivir group. After PSM, 387 (22.1%) patients in the prolonged oseltamivir and 119 (28.3%) patients in the standard group died (p = 0.009). After adjusting confounding factors, prolonged oseltamivir significantly reduced ICU mortality (odds ratio [OR]: 0.53, 95% confidence interval [CI]: 0.40-0.69). Prolonged oseltamivir may have protective effects on survival at Day 10 compared with a standard treatment course. Sensitivity analysis confirmed these findings. Compared with standard treatment, prolonged oseltamivir was associated with reduced ICU mortality in critically ill patients with severe influenza. Clinicians should consider extending the oseltamivir treatment duration to 10 days, particularly in higher-risk groups of prolonged viral shedding. Further randomized controlled trials are warranted to confirm these findings.


Subject(s)
Influenza, Human , Oseltamivir , Adult , Humans , Oseltamivir/therapeutic use , Influenza, Human/drug therapy , Antiviral Agents/therapeutic use , Retrospective Studies , Critical Illness
3.
Respir Res ; 24(1): 159, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37328754

ABSTRACT

BACKGROUND: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. METHODS: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. RESULTS: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. CONCLUSIONS: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.


Subject(s)
COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prospective Studies , Retrospective Studies , COVID-19/diagnosis , COVID-19/genetics , Critical Illness , Biomarkers , Intensive Care Units
4.
Crit Care ; 27(1): 72, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823625

ABSTRACT

BACKGROUND: Severe community-acquired pneumococcal meningitis is a medical emergency. The aim of the present investigation was to evaluate the epidemiology, management and outcomes of this condition. METHODS: This was a retrospective, observational and multicenter cohort study. Sixteen Spanish intensive care units (ICUs) were included. Demographic, clinical and microbiological variables from patients with Streptococcus pneumoniae meningitis admitted to ICU were evaluated. Clinical response was evaluated at 72 h after antibiotic treatment initiation, and meningitis complications, length of stay and 30-day mortality were also recorded. RESULTS: In total, 255 patients were included. Cerebrospinal fluid (CSF) culture was positive in 89.7%; 25.7% were non-susceptible to penicillin, and 5.2% were non-susceptible to ceftriaxone or cefotaxime. The most frequent empiric antibiotic regimen was third-generation cephalosporin (47.5%) plus vancomycin (27.8%) or linezolid (12.9%). A steroid treatment regimen was administered to 88.6% of the patients. Clinical response was achieved in 65.8% of patients after 72 h of antibiotic treatment. Multivariate analysis identified two factors associated with early treatment failure: invasive mechanical ventilation (OR 10.74; 95% CI 3.04-37.95, p < 0.001) and septic shock (OR 1.18; 95% CI 1.03-1.36, p = 0.017). The 30-day mortality rate was 13.7%. Only three factors were independently associated with 30-day mortality: delay in start of antibiotic treatment (OR 18.69; 95% CI 2.13-163.97, p = 0.008), Sepsis-related Organ Failure Assessment (SOFA) score (OR 1.36; 95% CI 1.12-1.66, p = 0.002) and early treatment failure (OR 21.75 (3.40-139.18), p = 0.001). Neurological complications appeared in 124 patients (48.63%). CONCLUSIONS: Mortality rate in critically ill patients with pneumococcal meningitis is lower than previously reported. Delay in antibiotic treatment following admission is the only amendable factor associated with mortality.


Subject(s)
Meningitis, Pneumococcal , Humans , Streptococcus pneumoniae , Prognosis , Cohort Studies , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , Intensive Care Units
5.
BMC Anesthesiol ; 23(1): 140, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37106321

ABSTRACT

BACKGROUND: The optimal time to intubate patients with SARS-CoV-2 pneumonia has not been adequately determined. While the use of non-invasive respiratory support before invasive mechanical ventilation might cause patient-self-induced lung injury and worsen the prognosis, non-invasive ventilation (NIV) is frequently used to avoid intubation of patients with acute respiratory failure (ARF). We hypothesized that delayed intubation is associated with a high risk of mortality in COVID-19 patients. METHODS: This is a secondary analysis of prospectively collected data from adult patients with ARF due to COVID-19 admitted to 73 intensive care units (ICUs) between February 2020 and March 2021. Intubation was classified according to the timing of intubation. To assess the relationship between early versus late intubation and mortality, we excluded patients with ICU length of stay (LOS) < 7 days to avoid the immortal time bias and we did a propensity score and a cox regression analysis. RESULTS: We included 4,198 patients [median age, 63 (54‒71) years; 71% male; median SOFA (Sequential Organ Failure Assessment) score, 4 (3‒7); median APACHE (Acute Physiology and Chronic Health Evaluation) score, 13 (10‒18)], and median PaO2/FiO2 (arterial oxygen pressure/ inspired oxygen fraction), 131 (100‒190)]; intubation was considered very early in 2024 (48%) patients, early in 928 (22%), and late in 441 (10%). ICU mortality was 30% and median ICU stay was 14 (7‒28) days. Mortality was higher in the "late group" than in the "early group" (37 vs. 32%, p < 0.05). The implementation of an early intubation approach was found to be an independent protective risk factor for mortality (HR 0.6; 95%CI 0.5‒0.7). CONCLUSIONS: Early intubation within the first 24 h of ICU admission in patients with COVID-19 pneumonia was found to be an independent protective risk factor of mortality. TRIAL REGISTRATION: The study was registered at Clinical-Trials.gov (NCT04948242) (01/07/2021).


Subject(s)
COVID-19 , Pneumonia , Respiratory Distress Syndrome , Adult , Female , Humans , Male , Middle Aged , COVID-19/therapy , Critical Illness/therapy , Hospital Mortality , Intensive Care Units , Intubation, Intratracheal , Oxygen , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
6.
J Intensive Care Med ; 35(6): 588-594, 2020 Jun.
Article in English | MEDLINE | ID: mdl-29699468

ABSTRACT

OBJECTIVE: To assess whether ventilator-associated lower respiratory tract infections (VA-LRTIs) are associated with mortality in critically ill patients with acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS: Post hoc analysis of prospective cohort study including mechanically ventilated patients from a multicenter prospective observational study (TAVeM study); VA-LRTI was defined as either ventilator-associated tracheobronchitis (VAT) or ventilator-associated pneumonia (VAP) based on clinical criteria and microbiological confirmation. Association between intensive care unit (ICU) mortality in patients having ARDS with and without VA-LRTI was assessed through logistic regression controlling for relevant confounders. Association between VA-LRTI and duration of mechanical ventilation and ICU stay was assessed through competing risk analysis. Contribution of VA-LRTI to a mortality model over time was assessed through sequential random forest models. RESULTS: The cohort included 2960 patients of which 524 fulfilled criteria for ARDS; 21% had VA-LRTI (VAT = 10.3% and VAP = 10.7%). After controlling for illness severity and baseline health status, we could not find an association between VA-LRTI and ICU mortality (odds ratio: 1.07; 95% confidence interval: 0.62-1.83; P = .796); VA-LRTI was also not associated with prolonged ICU length of stay or duration of mechanical ventilation. The relative contribution of VA-LRTI to the random forest mortality model remained constant during time. The attributable VA-LRTI mortality for ARDS was higher than the attributable mortality for VA-LRTI alone. CONCLUSION: After controlling for relevant confounders, we could not find an association between occurrence of VA-LRTI and ICU mortality in patients with ARDS.


Subject(s)
Bronchitis/mortality , Pneumonia, Ventilator-Associated/mortality , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/therapy , Tracheitis/mortality , Aged , Bronchitis/etiology , Critical Care Outcomes , Female , Hospital Mortality , Humans , Intensive Care Units , Logistic Models , Male , Middle Aged , Pneumonia, Ventilator-Associated/etiology , Prospective Studies , Tracheitis/etiology
9.
Med Intensiva (Engl Ed) ; 48(3): 142-154, 2024 03.
Article in English | MEDLINE | ID: mdl-37923608

ABSTRACT

OBJECTIVE: To evaluate the impact of obesity on ICU mortality. DESIGN: Observational, retrospective, multicentre study. SETTING: Intensive Care Unit (ICU). PATIENTS: Adults patients admitted with COVID-19 and respiratory failure. INTERVENTIONS: None. PRIMARY VARIABLES OF INTEREST: Collected data included demographic and clinical characteristics, comorbidities, laboratory tests and ICU outcomes. Body mass index (BMI) impact on ICU mortality was studied as (1) a continuous variable, (2) a categorical variable obesity/non-obesity, and (3) as categories defined a priori: underweight, normal, overweight, obesity and Class III obesity. The impact of obesity on mortality was assessed by multiple logistic regression and Smooth Restricted cubic (SRC) splines for Cox hazard regression. RESULTS: 5,206 patients were included, 20 patients (0.4%) as underweight, 887(17.0%) as normal, 2390(46%) as overweight, 1672(32.1) as obese and 237(4.5%) as class III obesity. The obesity group patients (n = 1909) were younger (61 vs. 65 years, p < 0.001) and with lower severity scores APACHE II (13 [9-17] vs. 13[10-17, p < 0.01) than non-obese. Overall ICU mortality was 28.5% and not different for obese (28.9%) or non-obese (28.3%, p = 0.65). Only Class III obesity (OR = 2.19, 95%CI 1.44-3.34) was associated with ICU mortality in the multivariate and SRC analysis. CONCLUSIONS: COVID-19 patients with a BMI > 40 are at high risk of poor outcomes in the ICU. An effective vaccination schedule and prolonged social distancing should be recommended.


Subject(s)
COVID-19 , Overweight , Adult , Humans , Overweight/complications , Overweight/epidemiology , Critical Illness , Retrospective Studies , Thinness/complications , COVID-19/complications , Obesity/complications , Obesity/epidemiology
10.
Lancet Microbe ; 4(6): e431-e441, 2023 06.
Article in English | MEDLINE | ID: mdl-37116517

ABSTRACT

BACKGROUND: The contribution of the virus to the pathogenesis of severe COVID-19 is still unclear. We aimed to evaluate associations between viral RNA load in plasma and host response, complications, and deaths in critically ill patients with COVID-19. METHODS: We did a prospective cohort study across 23 hospitals in Spain. We included patients aged 18 years or older with laboratory-confirmed SARS-CoV-2 infection who were admitted to an intensive care unit between March 16, 2020, and Feb 27, 2021. RNA of the SARS-CoV-2 nucleocapsid region 1 (N1) was quantified in plasma samples collected from patients in the first 48 h following admission, using digital PCR. Patients were grouped on the basis of N1 quantity: VIR-N1-Zero (<1 N1 copies per mL), VIR-N1-Low (1-2747 N1 copies per mL), and VIR-N1-Storm (>2747 N1 copies per mL). The primary outcome was all-cause death within 90 days after admission. We evaluated odds ratios (ORs) for the primary outcome between groups using a logistic regression analysis. FINDINGS: 1068 patients met the inclusion criteria, of whom 117 had insufficient plasma samples and 115 had key information missing. 836 patients were included in the analysis, of whom 403 (48%) were in the VIR-N1-Low group, 283 (34%) were in the VIR-N1-Storm group, and 150 (18%) were in the VIR-N1-Zero group. Overall, patients in the VIR-N1-Storm group had the most severe disease: 266 (94%) of 283 patients received invasive mechanical ventilation (IMV), 116 (41%) developed acute kidney injury, 180 (65%) had secondary infections, and 148 (52%) died within 90 days. Patients in the VIR-N1-Zero group had the least severe disease: 81 (54%) of 150 received IMV, 34 (23%) developed acute kidney injury, 47 (32%) had secondary infections, and 26 (17%) died within 90 days (OR for death 0·30, 95% CI 0·16-0·55; p<0·0001, compared with the VIR-N1-Storm group). 106 (26%) of 403 patients in the VIR-N1-Low group died within 90 days (OR for death 0·39, 95% CI 0·26-0·57; p<0·0001, compared with the VIR-N1-Storm group). INTERPRETATION: The presence of a so-called viral storm is associated with increased all-cause death in patients admitted to the intensive care unit with severe COVID-19. Preventing this viral storm could help to reduce poor outcomes. Viral storm could be an enrichment marker for treatment with antivirals or purification devices to remove viral components from the blood. FUNDING: Instituto de Salud Carlos III, Canadian Institutes of Health Research, Li Ka-Shing Foundation, Research Nova Scotia, and European Society of Clinical Microbiology and Infectious Diseases. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Subject(s)
Acute Kidney Injury , COVID-19 , Coinfection , Humans , SARS-CoV-2 , Prospective Studies , Cohort Studies , Spain/epidemiology , Intensive Care Units , Nova Scotia
11.
Sci Rep ; 13(1): 6553, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085552

ABSTRACT

Around one-third of patients diagnosed with COVID-19 develop a severe illness that requires admission to the Intensive Care Unit (ICU). In clinical practice, clinicians have learned that patients admitted to the ICU due to severe COVID-19 frequently develop ventilator-associated lower respiratory tract infections (VA-LRTI). This study aims to describe the clinical characteristics, the factors associated with VA-LRTI, and its impact on clinical outcomes in patients with severe COVID-19. This was a multicentre, observational cohort study conducted in ten countries in Latin America and Europe. We included patients with confirmed rtPCR for SARS-CoV-2 requiring ICU admission and endotracheal intubation. Only patients with a microbiological and clinical diagnosis of VA-LRTI were included. Multivariate Logistic regression analyses and Random Forest were conducted to determine the risk factors for VA-LRTI and its clinical impact in patients with severe COVID-19. In our study cohort of 3287 patients, VA-LRTI was diagnosed in 28.8% [948/3287]. The cumulative incidence of ventilator-associated pneumonia (VAP) was 18.6% [610/3287], followed by ventilator-associated tracheobronchitis (VAT) 10.3% [338/3287]. A total of 1252 bacteria species were isolated. The most frequently isolated pathogens were Pseudomonas aeruginosa (21.2% [266/1252]), followed by Klebsiella pneumoniae (19.1% [239/1252]) and Staphylococcus aureus (15.5% [194/1,252]). The factors independently associated with the development of VA-LRTI were prolonged stay under invasive mechanical ventilation, AKI during ICU stay, and the number of comorbidities. Regarding the clinical impact of VA-LRTI, patients with VAP had an increased risk of hospital mortality (OR [95% CI] of 1.81 [1.40-2.34]), while VAT was not associated with increased hospital mortality (OR [95% CI] of 1.34 [0.98-1.83]). VA-LRTI, often with difficult-to-treat bacteria, is frequent in patients admitted to the ICU due to severe COVID-19 and is associated with worse clinical outcomes, including higher mortality. Identifying risk factors for VA-LRTI might allow the early patient diagnosis to improve clinical outcomes.Trial registration: This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.


Subject(s)
Bronchitis , COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , Humans , Prospective Studies , COVID-19/complications , SARS-CoV-2 , Respiration, Artificial/adverse effects , Respiratory Tract Infections/complications , Pneumonia, Ventilator-Associated/drug therapy , Bronchitis/drug therapy , Ventilators, Mechanical/adverse effects , Risk Factors , Intensive Care Units
12.
J Crit Care ; 69: 154014, 2022 06.
Article in English | MEDLINE | ID: mdl-35217370

ABSTRACT

PURPOSE: Dexamethasone is the only drug that has consistently reduced mortality in patients with COVID-19, especially in patients needing oxygen or invasive mechanical ventilation. However, there is a growing concern about the relation of dexamethasone with the unprecedented rates of ICU-acquired respiratory tract infections (ICU-RTI) observed in patients with severe COVID-19. METHODS: This was a multicenter, prospective cohort study; conducted in ten countries in Latin America and Europe. We included patients older than 18 with confirmed SARS-CoV-2 requiring ICU admission. A multivariate logistic regression and propensity score matching (PSM) analysis was conducted to determine the relation between dexamethasone treatment and ICU-RTI. RESULTS: A total of 3777 patients were included. 2065 (54.7%) were treated with dexamethasone within the first 24 h of admission. After performing the PSM, patients treated with dexamethasone showed significantly higher proportions of VAP (282/1652 [17.1%] Vs. 218/1652 [13.2%], p = 0.014). Also, dexamethasone treatment was identified as an adjusted risk factor of ICU-RTI in the multivariate logistic regression model (OR 1.64; 95%CI: 1.37-1.97; p < 0.001). CONCLUSION: Patients treated with dexamethasone for severe COVID-19 had a higher risk of developing ICU-acquired respiratory tract infections after adjusting for days of invasive mechanical ventilation and ICU length of stay, suggesting a cautious use of this treatment.


Subject(s)
COVID-19 Drug Treatment , Dexamethasone/adverse effects , Humans , Intensive Care Units , Prospective Studies , Risk Factors , SARS-CoV-2
13.
J Infect ; 85(4): 374-381, 2022 10.
Article in English | MEDLINE | ID: mdl-35781017

ABSTRACT

BACKGROUND: Procalcitonin (PCT) and C-Reactive Protein (CRP) are useful biomarkers to differentiate bacterial from viral or fungal infections, although the association between them and co-infection or mortality in COVID-19 remains unclear. METHODS: The study represents a retrospective cohort study of patients admitted for COVID-19 pneumonia to 84 ICUs from ten countries between (March 2020-January 2021). Primary outcome was to determine whether PCT or CRP at admission could predict community-acquired bacterial respiratory co-infection (BC) and its added clinical value by determining the best discriminating cut-off values. Secondary outcome was to investigate its association with mortality. To evaluate the main outcome, a binary logistic regression was performed. The area under the curve evaluated diagnostic performance for BC prediction. RESULTS: 4635 patients were included, 7.6% fulfilled BC diagnosis. PCT (0.25[IQR 0.1-0.7] versus 0.20[IQR 0.1-0.5]ng/mL, p<0.001) and CRP (14.8[IQR 8.2-23.8] versus 13.3 [7-21.7]mg/dL, p=0.01) were higher in BC group. Neither PCT nor CRP were independently associated with BC and both had a poor ability to predict BC (AUC for PCT 0.56, for CRP 0.54). Baseline values of PCT<0.3ng/mL, could be helpful to rule out BC (negative predictive value 91.1%) and PCT≥0.50ng/mL was associated with ICU mortality (OR 1.5,p<0.001). CONCLUSIONS: These biomarkers at ICU admission led to a poor ability to predict BC among patients with COVID-19 pneumonia. Baseline values of PCT<0.3ng/mL may be useful to rule out BC, providing clinicians a valuable tool to guide antibiotic stewardship and allowing the unjustified overuse of antibiotics observed during the pandemic, additionally PCT≥0.50ng/mL might predict worsening outcomes.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Procalcitonin , Respiratory Tract Infections , Bacterial Infections/diagnosis , Biomarkers , C-Reactive Protein/analysis , COVID-19/diagnosis , Coinfection/diagnosis , Humans , Predictive Value of Tests , ROC Curve , Retrospective Studies
14.
BMC Infect Dis ; 11: 232, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21880131

ABSTRACT

BACKGROUND: Severe disease caused by 2009 pandemic influenza A/H1N1virus is characterized by the presence of hypercytokinemia. The origin of the exacerbated cytokine response is unclear. As observed previously, uncontrolled influenza virus replication could strongly influence cytokine production. The objective of the present study was to evaluate the relationship between host cytokine responses and viral levels in pandemic influenza critically ill patients. METHODS: Twenty three patients admitted to the ICU with primary viral pneumonia were included in this study. A quantitative PCR based method targeting the M1 influenza gene was developed to quantify pharyngeal viral load. In addition, by using a multiplex based assay, we systematically evaluated host cytokine responses to the viral infection at admission to the ICU. Correlation studies between cytokine levels and viral load were done by calculating the Spearman correlation coefficient. RESULTS: Fifteen patients needed of intubation and ventilation, while eight did not need of mechanical ventilation during ICU hospitalization. Viral load in pharyngeal swabs was 300 fold higher in the group of patients with the worst respiratory condition at admission to the ICU. Pharyngeal viral load directly correlated with plasma levels of the pro-inflammatory cytokines IL-6, IL-12p70, IFN-γ, the chemotactic factors MIP-1ß, GM-CSF, the angiogenic mediator VEGF and also of the immuno-modulatory cytokine IL-1ra (p < 0.05). Correlation studies demonstrated also the existence of a significant positive association between the levels of these mediators, evidencing that they are simultaneously regulated in response to the virus. CONCLUSIONS: Severe respiratory disease caused by the 2009 pandemic influenza virus is characterized by the existence of a direct association between viral replication and host cytokine response, revealing a potential pathogenic link with the severe disease caused by other influenza subtypes such as H5N1.


Subject(s)
Cytokines/metabolism , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/immunology , Influenza, Human/virology , Nasopharynx/virology , Adult , Critical Illness , Female , Humans , Influenza, Human/pathology , Male , Middle Aged , Polymerase Chain Reaction/methods , Viral Load/methods
15.
Crit Care ; 15(1): R66, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21342489

ABSTRACT

INTRODUCTION: Little information exists about the impact of acute kidney injury (AKI) in critically ill patients with the pandemic 2009 influenza A (H1N1) virus infection. METHODS: We conducted a prospective, observational, multicenter study in 148 Spanish intensive care units (ICUs). Patients with chronic renal failure were excluded. AKI was defined according to Acute Kidney Injury Network (AKIN) criteria. RESULTS: A total of 661 patients were analyzed. One hundred eighteen (17.7%) patients developed AKI; of these, 37 (31.4%) of the patients with AKI were classified as AKI I, 15 (12.7%) were classified as AKI II and 66 (55.9%) were classified as AKI III, among the latter of whom 50 (75.7%) required continuous renal replacement therapy. Patients with AKI had a higher Acute Physiology and Chronic Health Evaluation II score (19.2 ± 8.3 versus 12.6 ± 5.9; P < 0.001), a higher Sequential Organ Failure Assessment score (8.7 ± 4.2 versus 4.8 ± 2.9; P < 0.001), more need for mechanical ventilation (MV) (87.3% versus 56.2%; P < 0.01, odds ratio (OR) 5.3, 95% confidence interval (CI) 3.0 to 9.4), a greater incidence of shock (75.4% versus 38.3%; P < 0.01, OR 4.9, 95% CI, 3.1 to 7.7), a greater incidence of multiorgan dysfunction syndrome (92.4% versus 54.7%; P < 0.01, OR 10.0, 95% CI, 4.9 to 20.21) and a greater incidence of coinfection (23.7% versus 14.4%; P < 0.01, OR 1.8, 95% CI, 1.1 to 3.0). In survivors, patients with AKI remained on MV longer and ICU and hospital length of stay were longer than in patients without AKI. The overall mortality was 18.8% and was significantly higher for AKI patients (44.1% versus 13.3%; P < 0.01, OR 5.1, 95% CI, 3.3 to 7.9). Logistic regression analysis was performed with AKIN criteria, and it demonstrated that among patients with AKI, only AKI III was independently associated with higher ICU mortality (P < 0.001, OR 4.81, 95% CI 2.17 to 10.62). CONCLUSIONS: In our cohort of patients with H1N1 virus infection, only those cases in the AKI III category were independently associated with mortality.


Subject(s)
Acute Kidney Injury/epidemiology , Critical Illness/epidemiology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Acute Kidney Injury/mortality , Acute Kidney Injury/physiopathology , Adult , Critical Illness/mortality , Female , Humans , Influenza, Human/mortality , Influenza, Human/physiopathology , Intensive Care Units/trends , Male , Middle Aged , Prospective Studies
16.
Lancet Reg Health Eur ; 11: 100243, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34751263

ABSTRACT

BACKGROUND: It is unclear whether the changes in critical care throughout the pandemic have improved the outcomes in coronavirus disease 2019 (COVID-19) patients admitted to the intensive care units (ICUs). METHODS: We conducted a retrospective cohort study in adults with COVID-19 pneumonia admitted to 73 ICUs from Spain, Andorra and Ireland between February 2020 and March 2021. The first wave corresponded with the period from February 2020 to June 2020, whereas the second/third waves occurred from July 2020 to March 2021. The primary outcome was ICU mortality between study periods. Mortality predictors and differences in mortality between COVID-19 waves were identified using logistic regression. FINDINGS: As of March 2021, the participating ICUs had included 3795 COVID-19 pneumonia patients, 2479 (65·3%) and 1316 (34·7%) belonging to the first and second/third waves, respectively. Illness severity scores predicting mortality were lower in the second/third waves compared with the first wave according with the Acute Physiology and Chronic Health Evaluation system (median APACHE II score 12 [IQR 9-16] vs 14 [IQR 10-19]) and the organ failure assessment score (median SOFA 4 [3-6] vs 5 [3-7], p<0·001). The need of invasive mechanical ventilation was high (76·1%) during the whole study period. However, a significant increase in the use of high flow nasal cannula (48·7% vs 18·2%, p<0·001) was found in the second/third waves compared with the first surge. Significant changes on treatments prescribed were also observed, highlighting the remarkable increase on the use of corticosteroids to up to 95.9% in the second/third waves. A significant reduction on the use of tocilizumab was found during the study (first wave 28·9% vs second/third waves 6·2%, p<0·001), and a negligible administration of lopinavir/ritonavir, hydroxychloroquine, and interferon during the second/third waves compared with the first wave. Overall ICU mortality was 30·7% (n = 1166), without significant differences between study periods (first wave 31·7% vs second/third waves 28·8%, p = 0·06). No significant differences were found in ICU mortality between waves according to age subsets except for the subgroup of 61-75 years of age, in whom a reduced unadjusted ICU mortality was observed in the second/third waves (first 38·7% vs second/third 34·0%, p = 0·048). Non-survivors were older, with higher severity of the disease, had more comorbidities, and developed more complications. After adjusting for confounding factors through a multivariable analysis, no significant association was found between the COVID-19 waves and mortality (OR 0·81, 95% CI 0·64-1·03; p = 0·09). Ventilator-associated pneumonia rate increased significantly during the second/third waves and it was independently associated with ICU mortality (OR 1·48, 95% CI 1·19-1·85, p<0·001). Nevertheless, a significant reduction both in the ICU and hospital length of stay in survivors was observed during the second/third waves. INTERPRETATION: Despite substantial changes on supportive care and management, we did not find significant improvement on case-fatality rates among critical COVID-19 pneumonia patients. FUNDING: Ricardo Barri Casanovas Foundation (RBCF2020) and SEMICYUC.

17.
ERJ Open Res ; 7(1)2021 Jan.
Article in English | MEDLINE | ID: mdl-33718494

ABSTRACT

BACKGROUND: The relationship between early oseltamivir treatment (within 48 h of symptom onset) and mortality in patients admitted to intensive care units (ICUs) with severe influenza is disputed. This study aimed to investigate the association between early oseltamivir treatment and ICU mortality in critically ill patients with influenza pneumonia. METHODS: This was an observational study of patients with influenza pneumonia admitted to 184 ICUs in Spain during 2009-2018. The primary outcome was to evaluate the association between early oseltamivir treatment and ICU mortality compared with later treatment. Secondary outcomes were to compare the duration of mechanical ventilation and ICU length of stay between the early and later oseltamivir treatment groups. To reduce biases related to observational studies, propensity score matching and a competing risk analysis were performed. RESULTS: During the study period, 2124 patients met the inclusion criteria. All patients had influenza pneumonia and received oseltamivir before ICU admission. Of these, 529 (24.9%) received early oseltamivir treatment. In the multivariate analysis, early treatment was associated with reduced ICU mortality (OR 0.69, 95% CI 0.51-0.95). After propensity score matching, early oseltamivir treatment was associated with improved survival rates in the Cox regression (hazard ratio 0.77, 95% CI 0.61-0.99) and competing risk (subdistribution hazard ratio 0.67, 95% CI 0.53-0.85) analyses. The ICU length of stay and duration of mechanical ventilation were shorter in patients receiving early treatment. CONCLUSIONS: Early oseltamivir treatment is associated with improved survival rates in critically ill patients with influenza pneumonia, and may decrease ICU length of stay and mechanical ventilation duration.

18.
J Clin Med ; 11(1)2021 12 31.
Article in English | MEDLINE | ID: mdl-35011967

ABSTRACT

BACKGROUND: Some patients previously presenting with COVID-19 have been reported to develop persistent COVID-19 symptoms. While this information has been adequately recognised and extensively published with respect to non-critically ill patients, less is known about the incidence and factors associated with the characteristics of persistent COVID-19. On the other hand, these patients very often have intensive care unit-acquired pneumonia (ICUAP). A second infectious hit after COVID increases the length of ICU stay and mechanical ventilation and could have an influence on poor health post-COVID 19 syndrome in ICU-discharged patients. METHODS: This prospective, multicentre, and observational study was carrid out across 40 selected ICUs in Spain. Consecutive patients with COVID-19 requiring ICU admission were recruited and evaluated three months after hospital discharge. RESULTS: A total of 1255 ICU patients were scheduled to be followed up at 3 months; however, the final cohort comprised 991 (78.9%) patients. A total of 315 patients developed ICUAP (97% of them had ventilated ICUAP). Patients requiring invasive mechanical ventilation had more persistent post-COVID-19 symptoms than those who did not require mechanical ventilation. Female sex, duration of ICU stay, development of ICUAP, and ARDS were independent factors for persistent poor health post-COVID-19. CONCLUSIONS: Persistent post-COVID-19 symptoms occurred in more than two-thirds of patients. Female sex, duration of ICU stay, development of ICUAP, and ARDS all comprised independent factors for persistent poor health post-COVID-19. Prevention of ICUAP could have beneficial effects in poor health post-COVID-19.

19.
Crit Care ; 14(5): R167, 2010.
Article in English | MEDLINE | ID: mdl-20840779

ABSTRACT

INTRODUCTION: Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown. METHODS: We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analysis 8.5 (IPA) (Ingenuity Systems, Redwood City, CA) was used to select, annotate and visualize genes by function and pathway (gene ontology). IPA analysis identified those canonical pathways differentially expressed (P < 0.05) between comparison groups. Hierarchical clustering of those genes differentially expressed between groups by IPA analysis was performed using BRB-Array Tools v.3.8.1. RESULTS: The majority of patients were characterized by the presence of comorbidities and the absence of immunosuppressive conditions. pH1N1 specific antibody production was observed around day 9 from disease onset and defined an early period of innate immune response and a late period of adaptive immune response to the virus. The most severe patients (n = 12) showed persistence of viral secretion. Seven of the most severe patients died. During the late phase, the most severe patient group had impaired expression of a number of genes participating in adaptive immune responses when compared to less severe patients. These genes were involved in antigen presentation, B-cell development, T-helper cell differentiation, CD28, granzyme B signaling, apoptosis and protein ubiquitination. Patients with the poorest outcomes were characterized by proinflammatory hypercytokinemia, along with elevated levels of immunosuppressory cytokines (interleukin (IL)-10 and IL-1ra) in serum. CONCLUSIONS: Our findings suggest an impaired development of adaptive immunity in the most severe cases of pandemic influenza, leading to an unremitting cycle of viral replication and innate cytokine-chemokine release. Interruption of this deleterious cycle may improve disease outcome.


Subject(s)
Adaptive Immunity/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Pandemics , Severity of Illness Index , Adaptive Immunity/immunology , Adult , Down-Regulation/genetics , Down-Regulation/immunology , Female , Gene Expression Profiling/methods , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Male , Middle Aged
20.
Microorganisms ; 8(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722020

ABSTRACT

There is limited information available describing the clinical and epidemiological features of Spanish patients requiring hospitalization for coronavirus disease 2019 (COVID-19). In this observational study, we aimed to describe the clinical characteristics and epidemiological features of severe (non-ICU) and critically patients (ICU) with COVID-19 at triage, prior to hospitalization. Forty-eight patients (27 non-ICU and 21 ICU) with positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were analyzed (mean age, 66 years, [range, 33-88 years]; 67% males). There were no differences in age or sex among groups. Initial symptoms included fever (100%), coughing (85%), dyspnea (76%), diarrhea (42%) and asthenia (21%). ICU patients had a higher prevalence of dyspnea compared to non-ICU patients (95% vs. 61%, p = 0.022). ICU-patients had lymphopenia as well as hypoalbuminemia. Lactate dehydrogenase (LDH), C-reactive protein (CRP), and procalcitonin were significantly higher in ICU patients compared to non-ICU (p < 0.001). Lower albumin levels were associated with poor prognosis measured as longer hospital length (r = -0.472, p < 0.001) and mortality (r = -0.424, p = 0.003). As of 28 April 2020, 10 patients (8 ICU and 2 non-ICU) have died (21% mortality), and while 100% of the non-ICU patients have been discharged, 33% of the ICU patients still remained hospitalized (5 in ICU and 2 had been transferred to ward). Critically ill patients with COVID-19 present lymphopenia, hypoalbuminemia and high levels of inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL