Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Ann Hepatol ; 19(5): 458-465, 2020.
Article in English | MEDLINE | ID: mdl-31959521

ABSTRACT

Currently, chronic liver diseases have conditioned morbidity and mortality, many of these with a metabolic, toxicologic, immunologic, viral, or other etiology. Thus, a transcription factor that has been of huge importance for biomedical research is NRF-2. The latter is considered a principal component of the antioxidant mechanism, and it has been acknowledged that it impairs the function of NRF-2 in many liver diseases and that it forms an essential part of the pathologic changes that occur in the liver to contain inflammation and damage. Within the investigations and experiments carried out, there are isolated drugs, many of them related to plants and natural extracts that possess antioxidant properties through the NRF-2 signaling pathway, or even involving the stimulation of the transcription target proteins of NRF-2. Notwithstanding all of these experimental findings, to date there is not sufficient clinical evidence to justify the use of NRF-2 in medical practice.


Subject(s)
Liver/metabolism , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress , Animals , Antioxidants/therapeutic use , Humans , Liver/drug effects , Liver/pathology , NF-E2-Related Factor 2/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress/drug effects , Signal Transduction
2.
Int J Mol Sci ; 21(20)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086540

ABSTRACT

(1) Background: Regular exercise induces physiological and morphological changes in the organisms, but excessive training loads may induce damage and impair recovery or muscle growth. The purpose of the study was to evaluate the impact of Silymarin (SM) consumption on endurance capacity, muscle/cardiac histological changes, bodyweight, and food intake in rats subjected to 60 min of regular exercise training (RET) five days per week. (2) Methods: Male Wistar rats were subjected to an eight-week RET treadmill program and were previously administered SM and vitamin C. Bodyweight and food consumption were measured and registered. The maximal endurance capacity (MEC) test was performed at weeks one and eight. After the last training session, the animals were sacrificed, and samples of quadriceps/gastrocnemius and cardiac tissue were obtained and process for histological analyzes. (3) Results: SM consumption improved muscle recovery, inflammation, and damaged tissue, and promoted hypertrophy, vascularization, and muscle fiber shape/appearance. MEC increased after eight weeks of RET in all trained groups; moreover, the SM-treated group was enhanced more than the group with vitamin C. There were no significant changes in bodyweight and in food and nutrient consumption along the study. (5) Conclusion: SM supplementation may enhance physical performance, recovery, and muscle hypertrophy during the eight-week RET program.


Subject(s)
Body Weight , Dietary Supplements , Feeding Behavior , Muscle, Skeletal/pathology , Myocardium/pathology , Physical Conditioning, Animal , Physical Functional Performance , Silymarin/pharmacology , Animals , Ascorbic Acid/pharmacology , Body Weight/drug effects , Male , Muscle, Skeletal/drug effects , Physical Endurance/drug effects , Rats, Wistar , Silymarin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL