Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Dairy Sci ; 92(1): 177-88, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19109277

ABSTRACT

Effects of condensed tannins (CT), either via extract or plant-bound, and saponin extract on ruminal biohydrogenation of alpha-linolenic acid (ALA) were investigated in vitro. Grass-clover hay served as basal diet (control). The control hay was supplemented with extracts contributing either CT from Acacia mearnsii [7.9% of dietary dry matter (DM)] or saponins from Yucca schidigera (1.1% of DM). The fourth treatment consisted of dried sainfoin (Onobrychis viciifolia), a CT-containing forage legume, in an amount also providing 7.9% CT in dietary DM. All diets were supplemented with linseed oil at a level contributing 60% of total dietary ALA in all treatments. Diets were incubated for 10 d (n = 4) in the rumen simulation technique system, using the last 5 d for statistical evaluation. Fatty acids were analyzed in feed, feed residues, incubation fluid, and its effluent. Data were subjected to ANOVA considering diet and experimental run as main effects. Both CT treatments reduced ruminal fiber and crude protein degradation, and lowered incubation fluid ammonia concentration. Only the CT extract suppressed methane formation and shifted microbial populations toward bacteria at cost of protozoa. The saponin extract remained without clear effects on fermentation characteristics except for increased protozoal counts. The extent of ALA biohydrogenation was 20% less with the CT plant, but this probably resulted from reduced organic matter degradability rather than from an inhibition of biohydrogenation. After incubation analysis of incubation fluid effluent and feed residues showed a considerable proportion of the 3 biohydrogenation intermediates, cis-9, trans-11, cis-15 C18:3, trans-11, cis-15 C18:2, and trans-11 C18:1, which did not occur in the initial feeds. Only the CT-extract diet led to a different profile in the effluent compared with the control diet with trans-11 C18:1 being considerably increased at cost of C18:0. This could have been achieved by suppressing protozoa and enhancing the bacterial population, thus removing potential microbes involved in biohydrogenation and increasing competition between bacteria involved in biohydrogenation and others. The elevation of trans-11 C18:1 as the precursor of cis-9, trans-11 conjugated linoleic acid formed in body tissue and mammary gland is probably favorable from a human health point of view.


Subject(s)
Diet/veterinary , Proanthocyanidins/chemistry , Rumen/metabolism , alpha-Linolenic Acid/metabolism , Animals , Cattle , Hydrogenation , Rumen/microbiology
2.
Animal ; 6(11): 1764-73, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22717263

ABSTRACT

Alpine forages are assumed to have specific effects on ruminal digestion when fed to cattle. These effects were investigated in an experiment from two perspectives, either by using such forages as a substrate for incubation or as feed for a rumen fluid donor cow. In total, six 24-h in vitro batch culture runs were performed. Rumen fluid was collected from a non-lactating donor cow after having grazed pastures at ∼2000 m above sea level for 2, 6 and 10 weeks. These 'alpine runs' were compared with three lowland samplings from before and 2 and 6 weeks after the alpine grazing where a silage-concentrate mix was fed. In each run, nine replicates of four forages each were incubated. These forages differed in type and origin (alpine hay, lowland ryegrass hay, grass-maize silage mix, pure hemicellulose) as well as in the content of nutrients. Concentrations of phenolic compounds in the incubated forages were (g/kg dry matter (DM)): 20 (tannin proportion: 0.47), 8 (0.27), 15 (0.52) and 0 (0), respectively. Crude protein was highest in the silage mix and lowest with hemicellulose, whereas the opposite was the case for fiber. The total phenol contents (g/kg DM) for the high altitude and the lowland diet of the donor cow were 27 (tannins: 0.50 of phenols) and 12 (0.27), respectively. Independent of the origin of the rumen fluid, the incubation with alpine hay decreased (P < 0.05) bacterial counts, fermentation gas amount, volatile fatty acid (VFA) production as well as ammonia and methane concentrations in fermentation gas (the latter two being not lower when compared with hemicellulose). Alpine grazing of the cow in turn increased (P < 0.001) bacterial counts and, to a lesser extent, acetate proportion compared with lowland feeding. Further, alpine grazing decreased protozoal count (P < 0.05) and VFA production (P < 0.001) to a small extent, whereas methane remained widely unchanged. There were interactions (P < 0.05) between forage type incubated and feeding period of the donor cow in protozoal counts, acetate:propionate ratio, fermentation gas production and its content of methane, in vitro organic matter digestibility and metabolizable energy. Although increased phenolic compounds were the most consistent common property of the applied alpine forages, a clear attribution to certain effects was not possible in this study. As a further result, adaptation (long-term for donor cow, short term for 24 h incubations) appears to influence the expression of alpine forage effects in ruminal fermentation.


Subject(s)
Animal Feed , Cattle/metabolism , Fermentation/physiology , Rumen/metabolism , Altitude , Animal Feed/analysis , Animals , Biodiversity , Cattle/physiology , Digestion/physiology , Fatty Acids, Volatile/analysis , Female , Gastrointestinal Contents/chemistry , In Vitro Techniques , Rumen/physiology , Silage/analysis
3.
Animal ; 5(3): 450-61, 2011 Mar.
Article in English | MEDLINE | ID: mdl-22445412

ABSTRACT

Ruminant husbandry constitutes the most important source of anthropogenic methane (CH4). In addition to enteric (animal-derived) CH4, excreta are another source of CH4, especially when stored anaerobically. Increasing the proportion of dietary concentrate is often considered as the primary CH4 mitigation option. However, it is unclear whether this is still valid when diets to be compared are energy-balanced. In addition, non-structural carbohydrates and side effects on nitrogen (N) emissions may be important. In this experiment, diet types representing either forage-only or mixed diets were examined for their effects on CH4 and N emissions from animals and their slurries in 18 lactating cows. Apart from a hay-only diet, treatments included two mixed diets consisting of maize stover, pelleted whole maize plants and gluten or barley straw and grain and soy bean meal. The diets were balanced in crude protein and net energy for lactation. After adaptation, data and samples were collected for 8 days including a 2-day CH4 measurement in respiratory chambers. Faeces and urine, combined proportionately according to excretion, were used to determine slurry-derived CH4 and N emissions. Slurry was stored for 15 weeks at either 14°C or 27°C, and temperatures were classified as 'cool' and 'warm', respectively. The low-starch hay-only diet had high organic matter and fibre digestibility and proved to be equally effective on the cows' performance as mixed diets. The enteric CH4 formation remained unaffected by the diet except when related to digested fibre. In this case emission was lowest with the hay-only diet (61 v. 88 to 101 g CH4/kg digested NDF). Feeding the hay diet resulted in the highest slurry-CH4 production after 7 weeks of storage at 14°C and 27°C, and after 15 weeks at 14°C. CH4 emissions were, in general, about 10-fold higher at 27°C compared with 14°C but only after 15 weeks of storage. Urinary N losses were highest with the barley diet and lowest with the maize diet. There was a trend towards similar differences in N losses from the slurry of these cows (significant at 14°C). However, contrary to CH4, slurry-N emissions seemed to be temperature-independent. In conclusion, energetically balanced diets proved to be widely equivalent in their emission potential when combining animal and their slurry, this even at a clearly differing forage : concentrate ratio. The variation in CH4 emission from slurry stored shortly or at cold temperature for 15 weeks was of low importance as such conditions did not support methanogenesis in slurry anyway.

4.
Meat Sci ; 89(1): 98-104, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21550730

ABSTRACT

Carcass fat composition of cattle fed a forage-based diet might be inferior with maize silage compared to grass-silage based systems. This was quantified using complete diets with concentrate. To test whether supplements may influence carcass fat properties as well, the maize-silage diet was additionally supplemented either with Acacia mearnsii tannins, garlic, maca or lupines, feeds rich in secondary metabolites. The perirenal fat of 6×6 bulls fed these six diets was analysed for fatty acid profile and shelf life. The n-6/ n-3 ratio was always higher than 11 with the maize silage treatments and 2 with grass silage. The supplements did not affect the occurrence of biohydrogenation intermediates, including rumenic acid. Shelf life, being twice as long with maize compared to grass silage, was either unaffected or tended to be impaired, especially with supplementary garlic. Overall, supplementation was not efficient in improving carcass fat properties of maize-silage fed bulls.


Subject(s)
Fatty Acids/analysis , Meat , Poaceae/chemistry , Silage/analysis , Zea mays/chemistry , Adipose Tissue/chemistry , Animals , Antioxidants/pharmacology , Cattle , Garlic/metabolism , Lepidium/metabolism , Lupinus/metabolism , Oxidation-Reduction , Tannins/pharmacology
5.
Lett Appl Microbiol ; 37(1): 35-9, 2003.
Article in English | MEDLINE | ID: mdl-12803553

ABSTRACT

AIMS: To identify the most effective mixture of non-esterified lauric (C12) and myristic (C14) acid in suppressing ruminal methanogenesis, and to investigate their effects on the methanogenic population. METHODS AND RESULTS: C12/C14 mixtures were incubated with rumen fluid using the Hohenheim gas test apparatus. Methane production and the numbers of Archaea declined with an increasing proportion of C12. With a 2 : 1 proportion of C12/C14, the maximum methane-suppressing effect (96%) was achieved similar to that with C12 alone. The proportions of the individual methanogenic orders of total methanogens were altered by varying the C12/C14 ratio. CONCLUSIONS: Although C14 alone had no effect on methanogenesis, C14 enhanced the methane-suppressing effect of C12 in certain mixtures. SIGNIFICANCE AND IMPACT OF THE STUDY: The results support strategies for an environment-friendly ruminant nutrition as it was demonstrated that part of the less palatable C12 could be replaced by C14 without losing its methane-suppressing potential.


Subject(s)
Anti-Infective Agents/pharmacology , Euryarchaeota/drug effects , Lauric Acids/pharmacology , Myristic Acid/pharmacology , Rumen/microbiology , Animals , Cattle , Dose-Response Relationship, Drug , Drug Combinations , Euryarchaeota/growth & development , Methane/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL