Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Publication year range
1.
Opt Lett ; 49(8): 2121-2124, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621091

ABSTRACT

The purpose of this study is to verify the effect of anisotropic property of retinal biomechanics on vasodilation measurement. A custom-built optical coherence tomography (OCT) was used for time-lapse imaging of flicker stimulation-evoked vessel lumen changes in mouse retinas. A comparative analysis revealed significantly larger (18.21%) lumen dilation in the axial direction compared to the lateral (10.77%) direction. The axial lumen dilation predominantly resulted from the top vessel wall movement toward the vitreous direction, whereas the bottom vessel wall remained stable. This observation indicates that the traditional vasodilation measurement in the lateral direction may result in an underestimated value.


Subject(s)
Tomography, Optical Coherence , Vasodilation , Animals , Mice , Vasodilation/physiology , Tomography, Optical Coherence/methods , Photic Stimulation/methods , Retina/diagnostic imaging , Retina/physiology , Retinal Vessels/diagnostic imaging , Retinal Vessels/physiology
2.
Opt Lett ; 48(19): 5129-5132, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37773402

ABSTRACT

Neuronal hyperexcitability promises an early biomarker of Alzheimer's disease (AD). However, in vivo detection of neuronal hyperexcitability in the brain is technically challenging. The retina, one part of the central nervous system, presents a unique window for noninvasive monitoring of the brain function. This study aims to test the feasibility of using intrinsic signal optoretinography (ORG) for mapping retinal hyperexcitability associated with early-stage AD. Custom-designed optical coherence tomography (OCT) was employed for both morphological measurement and functional ORG of wild-type mice and 3xTg-AD mice. Comparative analysis revealed AD-induced retinal photoreceptor hyperexcitability prior to detectable structural degeneration.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/diagnostic imaging , Retina/diagnostic imaging , Photoreceptor Cells, Vertebrate , Brain , Tomography, Optical Coherence
3.
Retina ; 43(6): 992-998, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36763982

ABSTRACT

PURPOSE: To assess the quantitative characteristics of optical coherence tomography (OCT) and OCT angiography (OCTA) for the objective detection of early diabetic retinopathy (DR). METHODS: This was a retrospective and cross-sectional study, which was carried out at a tertiary academic practice with a subspecialty. Twenty control participants, 15 people with diabetics without retinopathy (NoDR), and 22 people with mild nonproliferative diabetic retinopathy (NPDR) were included in this study. Quantitative OCT characteristics were derived from the photoreceptor hyperreflective bands, i.e., inner segment ellipsoid (ISe) and retinal pigment epithelium (RPE). OCTA characteristics, including vessel diameter index (VDI), vessel perimeter index (VPI), and vessel skeleton density (VSD), were evaluated. RESULTS: Quantitative OCT analysis indicated that the ISe intensity was significantly trending downward with DR advancement. Comparative OCTA revealed VDI, VPI, and VSD as the most sensitive characteristics of DR. Correlation analysis of OCT and OCTA characteristics revealed weak variable correlation between the two imaging modalities. CONCLUSION: Quantitative OCT and OCTA analyses revealed photoreceptor and vascular distortions in early DR. Comparative analysis revealed that the OCT intensity ratio, ISe/RPE, has the best sensitivity for early DR detection. Weak variable correlation of the OCT and OCTA characteristics suggests that OCT and OCTA are providing supplementary information for DR detection and classification.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnosis , Retinal Vessels , Tomography, Optical Coherence/methods , Fluorescein Angiography/methods , Cross-Sectional Studies , Retrospective Studies
4.
Retina ; 42(8): 1442-1449, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35316256

ABSTRACT

PURPOSE: This study is to test the feasibility of optical coherence tomography (OCT) detection of photoreceptor abnormality and to verify that the photoreceptor abnormality is rod predominated in early diabetic retinopathy (DR). METHODS: OCT images were acquired from normal eyes, diabetic eyes with no DR, and mild nonproliferative DR (NPDR). Quantitative features, including thickness measurements quantifying band distances and reflectance intensity features among the external limiting membrane, inner segment ellipsoid, interdigitation zone, and retinal pigment epithelium were determined. Comparative OCT analysis of central fovea, parafovea, and perifovea were implemented to verify that the photoreceptor abnormality is rod predominated in early DR. RESULTS: Thickness abnormalities between the inner segment ellipsoid and interdigitation zone also showed a decreasing trend among cohorts. Reflectance abnormalities of the external limiting membrane, interdigitation zone, and inner segment ellipsoid were observed between healthy, no DR, and mild NPDR eyes. The normalized inner segment ellipsoid/retinal pigment epithelium intensity ratio revealed a significant decreasing trend in the perifovea, but no detectable difference in central fovea. CONCLUSION: Quantitative OCT analysis consistently revealed outer retina, i.e., photoreceptor changes in diabetic patients with no DR and mild NPDR. Comparative analysis of central fovea, parafovea, and perifovea confirmed that the photoreceptor abnormality is rod-predominated in early DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Retinal Degeneration , Diabetic Retinopathy/diagnosis , Humans , Retinal Pigment Epithelium , Retinal Rod Photoreceptor Cells , Tomography, Optical Coherence/methods
5.
Microvasc Res ; 105: 47-53, 2016 May.
Article in English | MEDLINE | ID: mdl-26776941

ABSTRACT

Intense pulsed light (IPL) with low energy insufficient to completely destroy a vasculature was applied to rabbit ears to investigate vasculature alteration. Glycerol was combined with IPL to enhance the transfer efficacy of IPL energy. Both trans-illumination and laser speckle contrast images were obtained and analyzed after treatment. The application of IPL and glycerol combination induced vasodilation and improvement in blood flow. Moreover, such phenomenon was maintained over time. IPL may be applied to treat blood circulatory diseases by inducing vasodilation and to improve blood flow.


Subject(s)
Ear/blood supply , Intense Pulsed Light Therapy , Optical Imaging/methods , Perfusion Imaging/methods , Vasodilation , Animals , Blood Flow Velocity , Female , Glycerol/administration & dosage , Intense Pulsed Light Therapy/instrumentation , Lasers, Dye , Models, Animal , Rabbits , Regional Blood Flow , Time Factors
6.
Lasers Med Sci ; 29(5): 1599-606, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24638943

ABSTRACT

The present study aimed to investigate the effects of a minimally invasive laser needle system (MILNS) on the acute progression of arthritis. Previous studies showed controversial clinical results regarding the effects of low-level laser therapy on arthritis, with the outcomes depending upon stimulation parameters such as laser wavelength and dosage. Based on the positive effects of MILNS on osteoporotic mice, we hypothesized that MILNS could potentially suppress the progression of arthritis owing to its biostimulation effects. Eight C57BL/6 mice with complete Freund's adjuvant (CFA)-induced arthritis were used as acute progression arthritis models and divided into the laser and control groups (n = 4 each). In the laser group, after minimally invasive laser stimulation, laser speckle contrast images (LSCIs) were obtained every 6 h for a total of 108 h. The LSCIs in the control group were obtained without laser stimulation. The effects of MILNS on the acute progression of arthritis were indirectly evaluated by calculating the paw area and the average laser speckle index (LSI) at the arthritis-induced area. Moreover, the macrophage population was estimated in the arthritis-induced area. Compared to the control group, the laser group showed (1) lower relative variations of the paw area, (2) lower average LSI in the arthritis-induced area, and (3) lower macrophage population in the arthritis-induced area. These results indicate that MILNS may suppress the acute progression of CFA-induced arthritis in mice and may thus be used as a potential treatment modality of arthritis in clinics.


Subject(s)
Arthritis/therapy , Freund's Adjuvant/therapeutic use , Lasers , Low-Level Light Therapy/instrumentation , Needles , Animals , Arthritis/physiopathology , Disease Models, Animal , Disease Progression , Low-Level Light Therapy/methods , Macrophages/radiation effects , Mice , Mice, Inbred C57BL , Treatment Outcome
7.
Biomed Opt Express ; 15(8): 4749-4763, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39346986

ABSTRACT

Precise interpretation of the anatomical origins of outer retinal optical coherence tomography (OCT) presents technical challenges owing to the delicate nature of the retina. To address this challenge, our study introduces a novel polarization-sensitive full-field swept-source OCT (FF-SS-OCT) that provides parallel-polarization and cross-polarization OCT measurements, predominantly capturing ballistically reflected photons and multiply scattered photons, respectively. Notably, parallel-polarization OCT unveils layer-like structures more effectively, including the inner plexiform layer (IPL) sub-layers, outer plexiform layer (OPL) sub-layers (in rod-dominant regions), and rod/cone outer segment (OS) tips, compared to cross-polarization OCT, where such sub-layers are not visible. Through a comparative analysis of parallel-polarization and cross-polarization OCT images of the outer retina, we discovered that the 2nd outer retinal OCT band results from contributions from both the ellipsoid zone (EZ) and the inner segment/outer segment (IS/OS) junction. Similarly, the 3rd outer retinal OCT band appears to reflect contributions from both the interdigitation zone (IZ) and photoreceptor OS tips. This polarization-sensitive approach advances our understanding of the origins of outer retinal OCT signals and proposes potential new biomarkers for assessing retinal health and diseases.

8.
Eye (Lond) ; 38(14): 2781-2787, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38773261

ABSTRACT

BACKGROUND: Reliable differentiation of uveal melanoma and choroidal nevi is crucial to guide appropriate treatment, preventing unnecessary procedures for benign lesions and ensuring timely treatment for potentially malignant cases. The purpose of this study is to validate deep learning classification of uveal melanoma and choroidal nevi, and to evaluate the effect of colour fusion options on the classification performance. METHODS: A total of 798 ultra-widefield retinal images of 438 patients were included in this retrospective study, comprising 157 patients diagnosed with UM and 281 patients diagnosed with choroidal naevus. Colour fusion options, including early fusion, intermediate fusion and late fusion, were tested for deep learning image classification with a convolutional neural network (CNN). F1-score, accuracy and the area under the curve (AUC) of a receiver operating characteristic (ROC) were used to evaluate the classification performance. RESULTS: Colour fusion options were observed to affect the deep learning performance significantly. For single-colour learning, the red colour image was observed to have superior performance compared to green and blue channels. For multi-colour learning, the intermediate fusion is better than early and late fusion options. CONCLUSION: Deep learning is a promising approach for automated classification of uveal melanoma and choroidal nevi. Colour fusion options can significantly affect the classification performance.


Subject(s)
Deep Learning , Melanoma , Uveal Neoplasms , Humans , Melanoma/classification , Melanoma/pathology , Uveal Neoplasms/classification , Uveal Neoplasms/pathology , Uveal Neoplasms/diagnosis , Retrospective Studies , Female , Male , Middle Aged , ROC Curve , Color , Choroid Neoplasms/classification , Choroid Neoplasms/pathology , Choroid Neoplasms/diagnostic imaging , Adult , Aged , Diagnosis, Differential
9.
Transl Vis Sci Technol ; 13(3): 25, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38546980

ABSTRACT

Purpose: The purpose of this study was to investigate the spectral characteristics of choroidal nevi and assess the feasibility of quantifying the basal diameter of choroidal nevi using multispectral fundus images captured with trans-palpebral illumination. Methods: The study used a widefield fundus camera with multispectral (625 nm, 780 nm, 850 nm, and 970 nm) trans-palpebral illumination to examine eight subjects diagnosed with choroidal nevi. Geometric features of nevi, including border clarity, overlying drusen, and lesion basal diameter, were characterized. Clinical imagers, including scanning laser ophthalmoscopy (SLO), autofluorescence (AF), and optical coherence tomography (OCT), were utilized for comparative assessment. Results: Fundus images depicted nevi as dark regions with high contrast against the background. Near-infrared (NIR) fundus images provided enhanced visibility of lesion borders compared to visible fundus images and SLO images. Lesion-background contrast measurements revealed 635 nm SLO at 11% and 625 nm fundus at 42%. Significantly enhanced contrasts were observed in NIR fundus images at 780 nm (73%), 850 nm (63%), and 970 nm (67%). For quantifying the diameter of nevi, NIR fundus images at 780 nm and 850 nm yielded a deviation of less than 10% when compared to OCT measurements. Conclusions: NIR fundus photography with trans-palpebral illumination enhances nevi visibility and boundary definition compared to SLO. Agreement in diameter measurements with OCT validates the accuracy and reliability of this method for choroidal nevi assessment. Translational Relevance: Multispectral fundus imaging with trans-palpebral illumination improves choroidal nevi visibility and accurately measures basal diameter, promising to enhance clinical practices in screening, diagnosis, and monitoring of choroidal nevi.


Subject(s)
Choroid Neoplasms , Nevus, Pigmented , Nevus , Skin Neoplasms , Humans , Lighting , Reproducibility of Results , Nevus, Pigmented/diagnostic imaging , Nevus, Pigmented/pathology , Choroid Neoplasms/diagnostic imaging , Choroid Neoplasms/pathology , Nevus/diagnostic imaging , Photography
10.
medRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260269

ABSTRACT

Purpose: To investigate the spectral characteristics of choroidal nevi and assess the feasibility of quantifying the basal diameter of choroidal nevi using multispectral fundus images captured with trans-palpebral illumination. Methods: The study employed a widefield fundus camera with multispectral (625 nm, 780 nm, 850 nm, and 970 nm) trans-palpebral illumination. Geometric features of choroidal nevi, including border clarity, overlying drusen, and lesion basal diameter, were characterized. Clinical imagers, including scanning laser ophthalmoscopy (SLO), autofluorescence (AF), and optical coherence tomography (OCT), were utilized for comparative assessment. Results: Fundus images captured with trans-palpebral illumination depicted nevi as dark regions with high contrast against the background. Near-infrared (NIR) fundus images provided enhanced visibility of lesion borders compared to visible light fundus images and SLO images. Lesion-background contrast measurements revealed 635 nm SLO at 11% and 625 nm fundus at 42%. Significantly enhanced contrasts were observed in NIR fundus images at 780 nm (73%), 850 nm (63%), and 970 nm (67%). For quantifying the basal diameter of nevi, NIR fundus images at 780 nm and 850 nm yielded a deviation of less than 10% when compared to OCT B-scan measurements. Conclusion: NIR fundus photography with trans-palpebral illumination enhances nevi visibility and boundary definition compared to SLO. Agreement in basal diameter measurements with OCT validates the accuracy and reliability of this method for choroidal nevi assessment.

11.
Biosensors (Basel) ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38534234

ABSTRACT

Ultrasound A-scan is an important tool for quantitative assessment of ocular lesions. However, its usability is limited by the difficulty of accurately localizing the ultrasound probe to a lesion of interest. In this study, a transparent LiNbO3 single crystal ultrasound transducer was fabricated, and integrated with a widefield fundus camera to guide the ultrasound local position. The electrical impedance, phase spectrum, pulse-echo performance, and optical transmission spectrum of the ultrasound transducer were validated. The novel fundus camera-guided ultrasound probe was tested for in vivo measurement of rat eyes. Anterior and posterior segments of the rat eye could be unambiguously differentiated with the fundus photography-guided ultrasound measurement. A model eye was also used to verify the imaging performance of the prototype device in the human eye. The prototype shows the potential of being used in the clinic to accurately measure the thickness and echogenicity of ocular lesions in vivo.


Subject(s)
Fluorescein Angiography , Rats , Animals , Humans , Fluorescein Angiography/methods , Ultrasonography
12.
J Biomed Opt ; 29(7): 076001, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38912212

ABSTRACT

Significance: Retinopathy of prematurity (ROP) poses a significant global threat to childhood vision, necessitating effective screening strategies. This study addresses the impact of color channels in fundus imaging on ROP diagnosis, emphasizing the efficacy and safety of utilizing longer wavelengths, such as red or green for enhanced depth information and improved diagnostic capabilities. Aim: This study aims to assess the spectral effectiveness in color fundus photography for the deep learning classification of ROP. Approach: A convolutional neural network end-to-end classifier was utilized for deep learning classification of normal, stage 1, stage 2, and stage 3 ROP fundus images. The classification performances with individual-color-channel inputs, i.e., red, green, and blue, and multi-color-channel fusion architectures, including early-fusion, intermediate-fusion, and late-fusion, were quantitatively compared. Results: For individual-color-channel inputs, similar performance was observed for green channel (88.00% accuracy, 76.00% sensitivity, and 92.00% specificity) and red channel (87.25% accuracy, 74.50% sensitivity, and 91.50% specificity), which is substantially outperforming the blue channel (78.25% accuracy, 56.50% sensitivity, and 85.50% specificity). For multi-color-channel fusion options, the early-fusion and intermediate-fusion architecture showed almost the same performance when compared to the green/red channel input, and they outperformed the late-fusion architecture. Conclusions: This study reveals that the classification of ROP stages can be effectively achieved using either the green or red image alone. This finding enables the exclusion of blue images, acknowledged for their increased susceptibility to light toxicity.


Subject(s)
Deep Learning , Photography , Retinopathy of Prematurity , Retinopathy of Prematurity/diagnostic imaging , Retinopathy of Prematurity/classification , Humans , Infant, Newborn , Photography/methods , Fundus Oculi , Image Interpretation, Computer-Assisted/methods , Neural Networks, Computer , Color
13.
Bioengineering (Basel) ; 10(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36978706

ABSTRACT

Accurate image registration is essential for eye movement compensation in optical coherence tomography (OCT) and OCT angiography (OCTA). The spatial resolution of an OCT instrument is typically anisotropic, i.e., has different resolutions in the lateral and axial dimensions. When OCT images have anisotropic pixel resolution, residual distortion (RD) and false translation (FT) are always observed after image registration for rotational movement. In this study, RD and FT were quantitively analyzed over different degrees of rotational movement and various lateral and axial pixel resolution ratio (RL/RA) values. The RD and FT provide the evaluation criteria for image registration. The theoretical analysis confirmed that the RD and FT increase significantly with the rotation degree and RL/RA. An image resizing assisting registration (RAR) strategy was proposed for accurate image registration. The performance of direct registration (DR) and RAR for retinal OCT and OCTA images were quantitatively compared. Experimental results confirmed that unnormalized RL/RA causes RD and FT; RAR can effectively improve the performance of OCT and OCTA image registration and distortion compensation.

14.
Biomed Opt Express ; 14(11): 5932-5945, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38021139

ABSTRACT

The purpose of this study is to demonstrate the feasibility of using polarization maintaining photons for enhanced contrast imaging of the retina. Orthogonal-polarization control has been frequently used in conventional fundus imaging systems to minimize reflection artifacts. However, the orthogonal-polarization configuration also rejects the directly reflected photons, which preserve the polarization condition of incident light, from the superficial layer of the fundus, i.e., the retina, and thus reduce the contrast of retinal imaging. We report here a portable fundus camera which can simultaneously perform orthogonal-polarization control to reject back-reflected light from the ophthalmic lens and parallel-polarization control to preserve the backscattered light from the retina which partially maintains the polarization state of the incoming light. This portable device utilizes miniaturized indirect ophthalmoscopy illumination to achieve non-mydriatic imaging, with a snapshot field of view of 101° eye-angle (67° visual-angle). Comparative analysis of retinal images acquired with a traditional orthogonal-polarization fundus camera from both normal and diseased eyes was conducted to validate the usefulness of the proposed design. The parallel-polarization control for enhanced contrast in high dynamic range imaging has also been validated.

15.
Exp Biol Med (Maywood) ; 248(9): 747-761, 2023 05.
Article in English | MEDLINE | ID: mdl-37452729

ABSTRACT

Major retinopathies can differentially impact the arteries and veins. Traditional fundus photography provides limited resolution for visualizing retinal vascular details. Optical coherence tomography (OCT) can provide improved resolution for retinal imaging. However, it cannot discern capillary-level structures due to the limited image contrast. As a functional extension of OCT modality, optical coherence tomography angiography (OCTA) is a non-invasive, label-free method for enhanced contrast visualization of retinal vasculatures at the capillary level. Recently differential artery-vein (AV) analysis in OCTA has been demonstrated to improve the sensitivity for staging of retinopathies. Therefore, AV classification is an essential step for disease detection and diagnosis. However, current methods for AV classification in OCTA have employed multiple imagers, that is, fundus photography and OCT, and complex algorithms, thereby making it difficult for clinical deployment. On the contrary, deep learning (DL) algorithms may be able to reduce computational complexity and automate AV classification. In this article, we summarize traditional AV classification methods, recent DL methods for AV classification in OCTA, and discuss methods for interpretability in DL models.


Subject(s)
Deep Learning , Retinal Diseases , Humans , Tomography, Optical Coherence/methods , Angiography , Arteries
16.
Transl Vis Sci Technol ; 12(4): 3, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37017960

ABSTRACT

Purpose: To evaluate the sensitivity of normalized blood flow index (NBFI) for detecting early diabetic retinopathy (DR). Methods: Optical coherence tomography angiography (OCTA) images of healthy controls, diabetic patients without DR (NoDR), and patients with mild nonproliferative DR (NPDR) were analyzed in this study. The OCTA images were centered on the fovea and covered a 6 mm × 6 mm area. Enface projections of the superficial vascular plexus (SVP) and the deep capillary plexus (DCP) were obtained for the quantitative OCTA feature analysis. Three quantitative OCTA features were examined: blood vessel density (BVD), blood flow flux (BFF), and NBFI. Each feature was calculated from both the SVP and DCP and their sensitivities to distinguish the three cohorts of the study were evaluated. Results: The only quantitative feature capable of distinguishing all three cohorts was NBFI in the DCP image. Comparative study revealed that both BVD and BFF were able to distinguish the controls and NoDR from mild NPDR. However, neither BVD nor BFF was sensitive enough to separate NoDR from the healthy controls. Conclusions: The NBFI has been demonstrated as a sensitive biomarker of early DR, revealing retinal blood flow abnormality better than traditional BVD and BFF. The NBFI in the DCP was verified as the most sensitive biomarker, supporting that diabetes affects the DCP earlier than SVP in DR. Translational Relevance: NBFI provides a robust biomarker for quantitative analysis of DR-caused blood flow abnormalities, promising early detection and objective classification of DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnosis , Fluorescein Angiography/methods , Retinal Vessels , Tomography, Optical Coherence/methods , Retina
17.
Res Sq ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37986860

ABSTRACT

Background: Reliable differentiation of uveal melanoma and choroidal nevi is crucial to guide appropriate treatment, preventing unnecessary procedures for benign lesions and ensuring timely treatment for potentially malignant cases. The purpose of this study is to validate deep learning classification of uveal melanoma and choroidal nevi, and to evaluate the effect of color fusion options on the classification performance. Methods: A total of 798 ultra-widefield retinal images of 438 patients were included in this retrospective study, comprising 157 patients diagnosed with UM and 281 patients diagnosed with choroidal nevus. Color fusion options, including early fusion, intermediate fusion and late fusion, were tested for deep learning image classification with a convolutional neural network (CNN). Specificity, sensitivity, F1-score, accuracy, and the area under the curve (AUC) of a receiver operating characteristic (ROC) were used to evaluate the classification performance. The saliency map visualization technique was used to understand the areas in the image that had the most influence on classification decisions of the CNN. Results: Color fusion options were observed to affect the deep learning performance significantly. For single-color learning, the red color image was observed to have superior performance compared to green and blue channels. For multi-color learning, the intermediate fusion is better than early and late fusion options. Conclusion: Deep learning is a promising approach for automated classification of uveal melanoma and choroidal nevi, and color fusion options can significantly affect the classification performance.

18.
Biomed Opt Express ; 14(11): 5629-5641, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38021114

ABSTRACT

Multi-spectral widefield fundus photography is valuable for the clinical diagnosis and management of ocular conditions that may impact both central and peripheral regions of the retina and choroid. Trans-palpebral illumination has been demonstrated as an alternative to transpupillary illumination for widefield fundus photography without requiring pupil dilation. However, spectral efficiency can be complicated due to the spatial variance of the light property through the palpebra and sclera. This study aims to investigate the effect of light delivery location on spectral efficiency in trans-palpebral illumination. Four narrow-band light sources, covering both visible and near infrared (NIR) wavelengths, were used to evaluate spatial dependency of spectral illumination efficiency. Comparative analysis indicated a significant dependence of visible light efficiency on spatial location, while NIR light efficiency is only slightly affected by the illumination location. This study confirmed the pars plana as the optimal location for delivering visible light to achieve color imaging of the retina. Conversely, spatial location is not critical for NIR light imaging of the choroid.

19.
Biomed Opt Express ; 14(2): 906-917, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36874492

ABSTRACT

Fundus photography is indispensable for the clinical detection and management of eye diseases. Low image contrast and small field of view (FOV) are common limitations of conventional fundus photography, making it difficult to detect subtle abnormalities at the early stages of eye diseases. Further improvements in image contrast and FOV coverage are important for early disease detection and reliable treatment assessment. We report here a portable, wide FOV fundus camera with high dynamic range (HDR) imaging capability. Miniaturized indirect ophthalmoscopy illumination was employed to achieve the portable design for nonmydriatic, widefield fundus photography. Orthogonal polarization control was used to eliminate illumination reflectance artifacts. With independent power controls, three fundus images were sequentially acquired and fused to achieve HDR function for local image contrast enhancement. A 101° eye-angle (67° visual-angle) snapshot FOV was achieved for nonmydriatic fundus photography. The effective FOV was readily expanded up to 190° eye-angle (134° visual-angle) with the aid of a fixation target without the need for pharmacologic pupillary dilation. The effectiveness of HDR imaging was validated with both normal healthy and pathologic eyes, compared to a conventional fundus camera.

20.
Biomed Opt Express ; 14(12): 6350-6360, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38420326

ABSTRACT

The wall-to-lumen ratio (WLR) of retinal blood vessels promises a sensitive marker for the physiological assessment of eye conditions. However, in vivo measurement of vessel wall thickness and lumen diameter is still technically challenging, hindering the wide application of WLR in research and clinical settings. In this study, we demonstrate the feasibility of using optical coherence tomography (OCT) as one practical method for in vivo quantification of WLR in the retina. Based on three-dimensional vessel tracing, lateral en face and axial B-scan profiles of individual vessels were constructed. By employing adaptive depth segmentation that adjusts to the individual positions of each blood vessel for en face OCT projection, the vessel wall thickness and lumen diameter could be reliably quantified. A comparative study of control and 5xFAD mice confirmed WLR as a sensitive marker of the eye condition.

SELECTION OF CITATIONS
SEARCH DETAIL