ABSTRACT
Cholesterol homeostasis is vital for proper cellular and systemic functions. Disturbed cholesterol balance underlies not only cardiovascular disease but also an increasing number of other diseases such as neurodegenerative diseases and cancers. The cellular cholesterol level reflects the dynamic balance between biosynthesis, uptake, export and esterification - a process in which cholesterol is converted to neutral cholesteryl esters either for storage in lipid droplets or for secretion as constituents of lipoproteins. In this Review, we discuss the latest advances regarding how each of the four parts of cholesterol metabolism is executed and regulated. The key factors governing these pathways and the major mechanisms by which they respond to varying sterol levels are described. Finally, we discuss how these pathways function in a concerted manner to maintain cholesterol homeostasis.
Subject(s)
Cholesterol/biosynthesis , Cholesterol/metabolism , Cholesterol/physiology , Animals , Cholesterol Esters/metabolism , Homeostasis/physiology , Humans , Lipid Metabolism/physiology , Lipoproteins/metabolismABSTRACT
Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases.
Subject(s)
Cholesterol/metabolism , Lysosomes/metabolism , Peroxisomes/metabolism , RNA, Small Interfering/metabolism , ATP-Binding Cassette Transporters/metabolism , Adrenoleukodystrophy/metabolism , Amphotericin B/pharmacology , Animals , Biological Transport , Genome-Wide Association Study , Humans , Mice , Peroxisomal Disorders/metabolism , Peroxisomal Disorders/pathology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Synaptotagmins/metabolism , ZebrafishABSTRACT
Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1f/f; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1f/f; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.
Subject(s)
Adipose Tissue, Brown/physiology , Adipose Tissue, White/pathology , Endoribonucleases/metabolism , Macrophages/physiology , Obesity/immunology , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Differentiation/genetics , Diet, High-Fat , Disease Models, Animal , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Energy Metabolism/genetics , Humans , Macrophage Activation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/geneticsABSTRACT
High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.
Subject(s)
Asialoglycoprotein Receptor , Cholesterol , Lipid Metabolism , AMP-Activated Protein Kinases/metabolism , ATP Binding Cassette Transporter 1 , ATP Binding Cassette Transporter, Subfamily G, Member 5 , ATP Binding Cassette Transporter, Subfamily G, Member 8 , Asialoglycoprotein Receptor/antagonists & inhibitors , Asialoglycoprotein Receptor/deficiency , Asialoglycoprotein Receptor/genetics , Asialoglycoprotein Receptor/metabolism , Asialoglycoproteins/metabolism , Atorvastatin/pharmacology , BRCA1 Protein , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cholesterol/metabolism , Drug Synergism , Endocytosis , Ezetimibe/pharmacology , Humans , Lipids/analysis , Lipids/blood , Liver/metabolism , Liver X Receptors/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Sterol Regulatory Element Binding Protein 1 , Ubiquitin-Protein Ligases/metabolismABSTRACT
Hedgehog (Hh) signaling pathway plays a pivotal role in embryonic development. Hh binding to Patched1 (PTCH1) derepresses Smoothened (SMO), thereby activating the downstream signal transduction. Covalent SMO modification by cholesterol in its cysteine-rich domain (CRD) is essential for SMO function. SMO cholesterylation is a calcium-accelerated autoprocessing reaction, and STIM1-ORAI1-mediated store-operated calcium entry promotes cholesterylation and activation of endosome-localized SMO. However, it is unknown whether the Hh-PTCH1 interplay regulates the activity of the endoplasmic reticulum (ER)-localized SMO. Here, we found that PTCH1 inhibited the COPII-dependent export of SMO from the ER, whereas Hh promoted this process. The RRxWxR amino acid motif in the cytosolic tail of SMO was essential for COPII recognition, ciliary localization, and signal transduction activity. Hh and PTCH1 regulated cholesterol modification of the ER-localized SMO, and SMO cholesterylation accelerated its exit from ER. The GRAMD1/ASTER sterol transport proteins facilitated cholesterol transfer to ER from PM, resulting in increased SMO cholesterylation and enhanced Hh signaling. Collectively, we reveal a regulatory role of GRAMD-mediated cholesterol transport in ER-resident SMO maturation and Hh signaling.
Subject(s)
Calcium , Hedgehog Proteins , Biological Transport , Calcium/metabolism , Cholesterol/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Membrane Proteins/metabolismABSTRACT
Cholesterol metabolism has been linked to immune functions, but the mechanisms by which cholesterol biosynthetic signaling orchestrates inflammasome activation remain unclear. Here, we have shown that NLRP3 inflammasome activation is integrated with the maturation of cholesterol master transcription factor SREBP2. Importantly, SCAP-SREBP2 complex endoplasmic reticulum-to-Golgi translocation was required for optimal activation of the NLRP3 inflammasome both in vitro and in vivo. Enforced cholesterol biosynthetic signaling by sterol depletion or statins promoted NLPR3 inflammasome activation. However, this regulation did not predominantly depend on changes in cholesterol homeostasis controlled by the transcriptional activity of SREBP2, but relied on the escort activity of SCAP. Mechanistically, NLRP3 associated with SCAP-SREBP2 to form a ternary complex which translocated to the Golgi apparatus adjacent to a mitochondrial cluster for optimal inflammasome assembly. Our study reveals that, in addition to controlling cholesterol biosynthesis, SCAP-SREBP2 also serves as a signaling hub integrating cholesterol metabolism with inflammation in macrophages.
Subject(s)
Cholesterol/metabolism , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Membrane Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 2/metabolism , Animals , Cell Line , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , Macrophages/immunology , Mice , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Transport , ProteolysisABSTRACT
Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.
Subject(s)
Cholesterol/biosynthesis , Eating/physiology , Hydroxymethylglutaryl CoA Reductases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Cell Line , Glucose/metabolism , Humans , Insulin/metabolism , Liver/metabolism , Male , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Metabolism/genetics , Mice , Mice, Inbred C57BL , Phosphorylation , Phosphoserine/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/deficiency , Ubiquitination , Weight GainABSTRACT
Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.
Subject(s)
Cholesterol/metabolism , Hedgehog Proteins/metabolism , Signal Transduction , Smoothened Receptor/metabolism , Animals , CHO Cells , Cilia/metabolism , Cricetulus , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , HEK293 Cells , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Hedgehog Proteins/genetics , Humans , Mice , Mice, Transgenic , Mutation , NIH 3T3 Cells , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Phenotype , Protein Processing, Post-Translational , RNA Interference , Smoothened Receptor/genetics , TransfectionABSTRACT
Sterol-regulatory element binding proteins (SREBPs) are a conserved transcription factor family governing lipid metabolism. When cellular cholesterol level is low, SREBP2 is transported from the endoplasmic reticulum to the Golgi apparatus where it undergoes proteolytic activation to generate a soluble N-terminal fragment, which drives the expression of lipid biosynthetic genes. Malfunctional SREBP activation is associated with various metabolic abnormalities. In this study, we find that overexpression of the active nuclear form SREBP2 (nSREBP2) causes caspase-dependent lytic cell death in various types of cells. These cells display typical pyroptotic and necrotic signatures, including plasma membrane ballooning and release of cellular contents. However, this phenotype is independent of the gasdermin family proteins or mixed lineage kinase domain-like (MLKL). Transcriptomic analysis identifies that nSREBP2 induces expression of p73, which further activates caspases. Through whole-genome CRISPR-Cas9 screening, we find that Pannexin-1 (PANX1) acts downstream of caspases to promote membrane rupture. Caspase-3 or 7 cleaves PANX1 at the C-terminal tail and increases permeability. Inhibition of the pore-forming activity of PANX1 alleviates lytic cell death. PANX1 can mediate gasdermins and MLKL-independent cell lysis during TNF-induced or chemotherapeutic reagents (doxorubicin or cisplatin)-induced cell death. Together, this study uncovers a noncanonical function of SREBPs as a potentiator of programmed cell death and suggests that PANX1 can directly promote lytic cell death independent of gasdermins and MLKL.
Subject(s)
Cell Death , Connexins , Nerve Tissue Proteins , Sterol Regulatory Element Binding Protein 2 , Humans , Caspase 3/metabolism , Caspase 7/metabolism , Cell Death/drug effects , Connexins/metabolism , Connexins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Sterol Regulatory Element Binding Protein 2/metabolismABSTRACT
Polycomb repressive complex 2 (PRC2) suppresses gene transcription by methylating lysine 27 of histone H3 (H3K27) and plays critical roles in embryonic development. Among the core PRC2 subunits, EZH2 is the catalytic subunit and EED allosterically activates EZH2 upon binding trimethylated H3K27 (H3K27me3). Activating mutations on Y641, A677, and A687 within the enzymatic SET (Su(Var)3 to 9, Enhancer-of-zeste, and Trithorax) domain of EZH2 have been associated with enhanced H3K27me3 and tumorigenicity of many cancers including B-cell lymphoma and melanoma. To tackle the critical residues outside the EZH2 SET domain, we examined EZH2 mutations in lymphoma from cancer genome databases and identified a novel gain-of-function mutation W113C, which increases H3K27me3 in vitro and in vivo and promotes CDKN2A silencing to a similar level as EZH2 Y641F. Different from other gain-of-function mutations, this mutation is located in the SET-activation loop at the EZH2 N terminus, which stabilizes the SET domain and facilitates substrate binding. This may explain how the W113C mutation increases PRC2 activity. Tazemetostat is a Food and Drug Administration-approved EZH2-binding inhibitor for follicular lymphoma treatment. Intriguingly, the W113C mutation leads to tazemetostat resistance in both H3K27 methylation and tumor proliferation. Another class of allosteric PRC2 inhibitor binding EED overcomes the resistance, effectively decreases H3K27me3, and blocks tumor proliferation in cells expressing EZH2 W113C. As this mutation is originally identified from lymphoma samples, our results demonstrated its activating characteristic and the deleterious consequence, provide insights on PRC2 regulation, and support the continued exploration of treatment optimization for lymphoma patients.
Subject(s)
Drug Resistance, Neoplasm , Gain of Function Mutation , Lymphoma, B-Cell , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/metabolism , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Mutation , Polycomb Repressive Complex 2/geneticsABSTRACT
BACKGROUND: Lower plasma levels of LDL (low-density lipoprotein) cholesterol (LDL-C) can reduce the risk of atherosclerotic cardiovascular disease. The loss-of-function mutations in PCSK9 (proprotein convertase subtilisin/kexin type 9) have been known to associate with low LDL-C in many human populations. PCSK9 genetic variants in Chinese Uyghurs who are at high risk of atherosclerotic cardiovascular disease due to their dietary habits have not been reported. METHODS: The study involved the whole-exome and target sequencing of college students from Uyghur and other ethnic groups in Xinjiang, China, for the association of PCSK9 loss-of-function mutations with low plasma levels of LDL-C. The mechanisms by which the identified mutations affect the function of PCSK9 were investigated in cultured cells using biochemical and cell assays. The causal effects of the identified PCSK9 mutations on LDL-C levels were verified in mice injected with adeno-associated virus expressing different forms of PCSK9 and fed a high-cholesterol diet. RESULTS: We identified 2 PCSK9 mutations-E144K and C378W-in Chinese Uyghurs with low plasma levels of LDL-C. The E144K and C378W mutations impaired the maturation and secretion of the PCSK9 protein, respectively. Adeno-associated virus-mediated expression of E144K and C378W mutants in Pcsk9 KO (knockout) mice fed a high-cholesterol diet also hampered PCSK9 secretion into the serum, resulting in elevated levels of LDL receptor in the liver and reduced levels of LDL-C in the serum. CONCLUSIONS: Our study shows that E144K and C378W are PCSK9 loss-of-function mutations causing low LDL-C levels in mice and probably in humans as well.
Subject(s)
Atherosclerosis , Cardiovascular Diseases , Hypercholesterolemia , Humans , Mice , Animals , Proprotein Convertase 9/genetics , Cholesterol, LDL , Serine Endopeptidases/genetics , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Mice, Knockout , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Atherosclerosis/metabolism , MutationABSTRACT
Cholesterol is dynamically transported among membrane-bound organelles primarily by nonvesicular mechanisms. Sterol transfer proteins (STPs) bind cholesterol in their hydrophobic pockets and facilitate its transfer across the aqueous cytosol. However, STPs alone may not account for the specific and efficient movement of cholesterol between intracellular membranes. Accumulating evidence has shown that membrane contact sites (MCSs), regions where two distinct organelles are in close apposition to one another, can facilitate STP-mediated cholesterol trafficking in a cell. At some MCSs, cholesterol can move against its concentration by using phosphatidylinositol 4-phosphate (PI4P) metabolism as the driving force. Finally, the emergence of more MCSs and the discovery of a new STP family further highlight the crucial roles of MCSs and STPs in intracellular cholesterol transport.
Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Animals , Biological Transport/physiology , Humans , Phosphatidylinositol Phosphates/metabolismABSTRACT
Accurate intracellular cholesterol traffic plays crucial roles. Niemann Pick type C (NPC) proteins NPC1 and NPC2, are two lysosomal cholesterol transporters that mediate the cholesterol exit from lysosomes. However, other proteins involved in this process remain poorly defined. Here, we find that the previously unannotated protein TMEM241 is required for cholesterol egressing from lysosomes through amphotericin B-based genome-wide CRISPR-Cas9 KO screening. Ablation of TMEM241 caused impaired sorting of NPC2, a protein utilizes the mannose-6-phosphate (M6P) modification for lysosomal targeting, resulting in cholesterol accumulation in the lysosomes. TMEM241 is a member of solute transporters 35 nucleotide sugar transporters family and localizes on the cis-Golgi network. Our data indicate that TMEM241 transports UDP-N-acetylglucosamine (UDP-GlcNAc) into Golgi lumen and UDP-GlcNAc is used for the M6P modification of proteins including NPC2. Furthermore, Tmem241-deficient mice display cholesterol accumulation in pulmonary cells and behave pulmonary injury and hypokinesia. Taken together, we demonstrate that TMEM241 is a Golgi-localized UDP-GlcNAc transporter and loss of TMEM241 causes cholesterol accumulation in lysosomes because of the impaired M6P-dependent lysosomal targeting of NPC2.
Subject(s)
Cholesterol , Vesicular Transport Proteins , Animals , Mice , Vesicular Transport Proteins/metabolism , Cholesterol/metabolism , Uridine Diphosphate/metabolism , Lysosomes/metabolismABSTRACT
BACKGROUND: High blood cholesterol accelerates the progression of atherosclerosis, which is an asymptomatic process lasting for decades. Rupture of atherosclerotic plaques induces thrombosis, which results in myocardial infarction or stroke. Lowering cholesterol levels is beneficial for preventing atherosclerotic cardiovascular disease. METHODS: Low-density lipoprotein (LDL) receptor (LDLR) was used as bait to identify its binding proteins in the plasma, and the coagulation factor prekallikrein (PK; encoded by the KLKB1 gene) was revealed. The correlation between serum PK protein content and lipid levels in young Chinese Han people was then analyzed. To investigate the effects of PK ablation on LDLR and lipid levels in vivo, we genetically deleted Klkb1 in hamsters and heterozygous Ldlr knockout mice and knocked down Klkb1 using adeno-associated virus-mediated shRNA in rats. The additive effect of PK and proprotein convertase subtilisin/kexin 9 inhibition also was evaluated. In addition, we applied the anti-PK neutralizing antibody that blocked the PK and LDLR interaction in mice. Mice lacking both PK and apolipoprotein e (Klkb1-/-Apoe-/-) were generated to assess the role of PK in atherosclerosis. RESULTS: PK directly bound LDLR and induced its lysosomal degradation. The serum PK concentrations positively correlated with LDL cholesterol levels in 198 young Chinese Han adults. Genetic depletion of Klkb1 increased hepatic LDLR and decreased circulating cholesterol in multiple rodent models. Inhibition of proprotein convertase subtilisin/kexin 9 with evolocumab further decreased plasma LDL cholesterol levels in Klkb1-deficient hamsters. The anti-PK neutralizing antibody could similarly lower plasma lipids through upregulating hepatic LDLR. Ablation of Klkb1 slowed the progression of atherosclerosis in mice on Apoe-deficient background. CONCLUSIONS: PK regulates circulating cholesterol levels through binding to LDLR and inducing its lysosomal degradation. Ablation of PK stabilizes LDLR, decreases LDL cholesterol, and prevents atherosclerotic plaque development. This study suggests that PK is a promising therapeutic target to treat atherosclerotic cardiovascular disease.
Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Cholesterol, LDL/metabolism , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/prevention & control , Prekallikrein/deficiency , Receptors, LDL/metabolism , Animals , Atherosclerosis/genetics , Cholesterol, LDL/genetics , Lysosomes/genetics , Lysosomes/metabolism , Mice , Mice, Knockout , Plaque, Atherosclerotic/genetics , Prekallikrein/metabolism , Proteolysis , Receptors, LDL/geneticsABSTRACT
BACKGROUND AND AIMS: NASH is associated with high levels of cholesterol and triglyceride (TG) in the liver; however, there is still no approved pharmacological therapy. Synthesis of cholesterol and TG is controlled by sterol regulatory element-binding protein (SREBP), which is found to be abnormally activated in NASH patients. We aim to discover small molecules for treating NASH by inhibiting the SREBP pathway. APPROACH AND RESULTS: Here, we identify a potent SREBP inhibitor, 25-hydroxylanosterol (25-HL). 25-HL binds to insulin-induced gene (INSIG) proteins, stimulates the interaction between INSIG and SCAP, and retains them in the endoplasmic reticulum, thereby suppressing SREBP activation and inhibiting lipogenesis. In NASH mouse models, 25-HL lowers levels of cholesterol and TG in serum and the liver, enhances energy expenditure to prevent obesity, and improves insulin sensitivity. 25-HL dramatically ameliorates hepatic steatosis, inflammation, ballooning, and fibrosis through down-regulating the expression of lipogenic genes. Furthermore, 25-HL exhibits both prophylactic and therapeutic efficacies of alleviating NASH and atherosclerosis in amylin liver NASH model diet-treated Ldlr-/- mice, and reduces the formation of cholesterol crystals and associated crown-like structures of Kupffer cells. Notably, 25-HL lowers lipid contents in serum and the liver to a greater extent than lovastatin or obeticholic acid. 25-HL shows a good safety and pharmacokinetics profile. CONCLUSIONS: This study provides the proof of concept that inhibiting SREBP activation by targeting INSIG to lower lipids could be a promising strategy for treating NASH. It suggests the translational potential of 25-HL in human NASH and demonstrates the critical role of SREBP-controlled lipogenesis in the progression of NASH by pharmacological inhibition.
Subject(s)
Insulins , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Lipogenesis/physiology , Sterol Regulatory Element Binding Proteins , Sterol Regulatory Element Binding Protein 1/metabolism , Islet Amyloid Polypeptide/metabolism , Liver/metabolism , Triglycerides/metabolism , Cholesterol/metabolism , Lovastatin/metabolism , Insulins/metabolism , Mice, Inbred C57BLABSTRACT
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by excess lipid accumulation in the liver without significant consumption of alcohol. The transmembrane 6 superfamily member 2 (TM6SF2) E167K missense variant strongly associates with NAFLD in humans. The E167K mutation destabilizes TM6SF2, resulting in hepatic lipid accumulation and low serum lipid levels. However, the molecular mechanism by which TM6SF2 regulates lipid metabolism remains unclear. By using tandem affinity purification in combination with mass spectrometry, we found that apolipoprotein B (APOB), ER lipid raft protein (ERLIN) 1 and 2 were TM6SF2-interacting proteins. ERLINs and TM6SF2 mutually bound and stabilized each other. TM6SF2 bound and stabilized APOB via two luminal loops. ERLINs did not interact with APOB directly but still increased APOB stability through stabilizing TM6SF2. This APOB stabilization was hampered by the E167K mutation that reduced the protein expression of TM6SF2. In mice, knockout of Tm6sf2 and knockdown of Tm6sf2 or Erlins decreased hepatic APOB protein level, causing lipid accumulation in the liver and lowering lipid levels in the serum. We conclude that defective APOB stabilization, as a result of ERLINs or TM6SF2 deficiency or E167K mutation, is a key factor contributing to NAFLD.
Subject(s)
Apolipoprotein B-100/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Animals , Cholesterol/genetics , Cholesterol/metabolism , Genetic Predisposition to Disease , Genotype , Humans , Immunoprecipitation , Lipid Metabolism/genetics , Lipids/blood , Lipids/genetics , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Polymorphism, Single Nucleotide/genetics , Protein Binding/genetics , TransfectionABSTRACT
Inducible degrader of the low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase mediating degradation of low-density lipoprotein (LDL) receptor (LDLR). IDOL also controls its own stability through autoubiquitination, primarily at lysine 293. Whether IDOL may undergo other forms of posttranslational modification is unknown. In this study, we show that IDOL can be modified by small ubiquitin-like modifier 1 at the K293 residue at least. The SUMOylation of IDOL counteracts its ubiquitination and augments IDOL protein levels. SUMOylation and the associated increase of IDOL protein are effectively reversed by SUMO-specific peptidase 1 (SENP1) in an activity-dependent manner. We further demonstrate that SENP1 affects LDLR protein levels by modulating IDOL. Overexpression of SENP1 increases LDLR protein levels and enhances LDL uptake in cultured cells. On the contrary, loss of SENP1 lowers LDLR levels in an IDOL-dependent manner and reduces LDL endocytosis. Collectively, our results reveal SUMOylation as a new regulatory posttranslational modification of IDOL and suggest that SENP1 positively regulates the LDLR pathway via deSUMOylation of IDOL and may therefore be exploited for the treatment of cardiovascular disease.
Subject(s)
Cysteine Endopeptidases/metabolism , Receptors, LDL/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line , Humans , Protein Processing, Post-Translational , Sumoylation , UbiquitinationABSTRACT
BACKGROUND AND AIMS: Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor. APPROACH AND RESULTS: Here, using a liver-specific Setd2 depletion model, we found that Setd2 deficiency is sufficient to trigger spontaneous HCC. Meanwhile, Setd2 depletion significantly increased tumor and tumor size of a diethylnitrosamine-induced HCC model. The mechanistic study showed that Setd2 suppresses HCC not only through modulating DNA damage response, but also by regulating lipid metabolism in the liver. Setd2 deficiency down-regulated H3K36me3 enrichment and expression of cholesterol efflux genes and caused lipid accumulation. High-fat diet enhanced lipid accumulation and promoted the development of HCC in Setd2-deficient mice. Chromatin immunoprecipitation sequencing analysis further revealed that Setd2 depletion induced c-Jun/activator protein 1 (AP-1) activation in the liver, which was trigged by accumulated lipid. c-Jun acts as an oncogene in HCC and functions through inhibiting p53 in Setd2-deficient cells. CONCLUSIONS: We revealed the roles of Setd2 in HCC and the underlying mechanisms in regulating cholesterol homeostasis and c-Jun/AP-1 signaling.
Subject(s)
Carcinoma, Hepatocellular/etiology , Histone-Lysine N-Methyltransferase/deficiency , Lipid Metabolism , Liver Neoplasms/etiology , Liver/metabolism , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cholesterol/blood , Chromatin Immunoprecipitation , Gene Editing , Gene Expression Regulation, Neoplastic , HEK293 Cells , Hep G2 Cells , Histone-Lysine N-Methyltransferase/metabolism , Humans , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Triglycerides/bloodABSTRACT
CD8(+) T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment. Reactivating the cytotoxicity of CD8(+) T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8(+) T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme, led to potentiated effector function and enhanced proliferation of CD8(+) but not CD4(+) T cells. This is due to the increase in the plasma membrane cholesterol level of CD8(+) T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8(+) T cells were better than wild-type CD8(+) T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.