Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Cell ; 179(6): 1276-1288.e14, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31778654

ABSTRACT

Although human genetic studies have implicated many susceptible genes associated with plasma lipid levels, their physiological and molecular functions are not fully characterized. Here we demonstrate that orphan G protein-coupled receptor 146 (GPR146) promotes activity of hepatic sterol regulatory element binding protein 2 (SREBP2) through activation of the extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating hepatic very low-density lipoprotein (VLDL) secretion, and subsequently circulating low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) levels. Remarkably, GPR146 deficiency reduces plasma cholesterol levels substantially in both wild-type and LDL receptor (LDLR)-deficient mice. Finally, aortic atherosclerotic lesions are reduced by 90% and 70%, respectively, in male and female LDLR-deficient mice upon GPR146 depletion. Taken together, these findings outline a regulatory role for the GPR146/ERK axis in systemic cholesterol metabolism and suggest that GPR146 inhibition could be an effective strategy to reduce plasma cholesterol levels and atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Hypercholesterolemia/metabolism , Receptors, G-Protein-Coupled/deficiency , Animals , Atherosclerosis/blood , Base Sequence , Cholesterol/blood , Dependovirus/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fasting , Female , Hepatocytes/metabolism , Humans , Hypercholesterolemia/blood , Lipoproteins, VLDL/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , RNA, Small Interfering/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, LDL/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 2/metabolism , Triglycerides/blood , Up-Regulation
2.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929899

ABSTRACT

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Subject(s)
Aging/metabolism , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Membranes/physiology , Animals , Autophagy/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/physiology , Caloric Restriction , HEK293 Cells , Humans , Longevity/physiology , Male , Mice , Mice, Knockout , Mitochondria , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Permeability , Primary Cell Culture , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Reperfusion Injury/metabolism , Signal Transduction
3.
Cell ; 167(7): 1705-1718.e13, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27984722

ABSTRACT

Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.


Subject(s)
Metformin/pharmacology , Acyl-CoA Dehydrogenase/genetics , Aging , Animals , Body Size , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Humans , Longevity , Mechanistic Target of Rapamycin Complex 1 , Mitochondria/metabolism , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , Neoplasms/drug therapy , Nuclear Pore/metabolism , Oxidative Phosphorylation , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism
4.
Development ; 150(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37982457

ABSTRACT

Both hedgehog (Hh) and target of rapamycin complex 2 (TORC2) are central, evolutionarily conserved signaling pathways that regulate development and metabolism. In C. elegans, loss of the essential TORC2 component RICTOR (rict-1) causes delayed development, shortened lifespan, reduced brood, small size and increased fat. Here, we report that knockdown of both the hedgehog-related morphogen grd-1 and its patched-related receptor ptr-11 rescues delayed development in TORC2 loss-of-function mutants, and grd-1 and ptr-11 overexpression delays wild-type development to a similar level to that in TORC2 loss-of-function animals. These findings potentially indicate an unexpected role for grd-1 and ptr-11 in slowing developmental rate downstream of a nutrient-sensing pathway. Furthermore, we implicate the chronic stress transcription factor pqm-1 as a key transcriptional effector in this slowing of whole-organism growth by grd-1 and ptr-11. We propose that TORC2, grd-1 and ptr-11 may act linearly or converge on pqm-1 to delay organismal development.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , Signal Transduction/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Patched Receptors
5.
PLoS Biol ; 17(5): e3000285, 2019 05.
Article in English | MEDLINE | ID: mdl-31136567

ABSTRACT

Starvation is among the most ancient of selection pressures, driving evolution of a robust arsenal of starvation survival defenses. In order to survive starvation stress, organisms must be able to curtail anabolic processes during starvation and judiciously activate catabolic pathways. Although the activation of metabolic defenses in response to nutrient deprivation is an obvious component of starvation survival, less appreciated is the importance of the ability to recover from starvation upon re-exposure to nutrients. In order for organisms to successfully recover from starvation, cells must be kept in a state of ready so that upon the return of nutrients, activities such as growth and reproduction can be resumed. Critical to this state of ready is the lysosome, an organelle that provides essential signals of nutrient sufficiency to cell growth-activating pathways in the fed state. In this issue, Murphy and colleagues provide evidence that exposure of Caenorhabditis elegans roundworms to 2 simple nutrients, glucose and the polyunsaturated fatty acid linoleate, is able to render lysosomal function competent to activate key downstream starvation recovery pathways, bypassing the need for a master transcriptional regulator of lysosomes. These findings provide a quantum leap forward in our understanding of the cellular determinants that permit organisms to survive cycles of feast and famine.


Subject(s)
Caenorhabditis elegans Proteins , Lysosomes , Animals , Basic Helix-Loop-Helix Transcription Factors , Caenorhabditis elegans , Nutrients
6.
Proc Natl Acad Sci U S A ; 116(44): 22322-22330, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611372

ABSTRACT

Early host responses toward pathogens are essential for defense against infection. In Caenorhabditis elegans, the transcription factor, SKN-1, regulates cellular defenses during xenobiotic intoxication and bacterial infection. However, constitutive activation of SKN-1 results in pleiotropic outcomes, including a redistribution of somatic lipids to the germline, which impairs health and shortens lifespan. Here, we show that exposing C. elegans to Pseudomonas aeruginosa similarly drives the rapid depletion of somatic, but not germline, lipid stores. Modulating the epigenetic landscape refines SKN-1 activity away from innate immunity targets, which alleviates negative metabolic outcomes. Similarly, exposure to oxidative stress redirects SKN-1 activity away from pathogen response genes while restoring somatic lipid distribution. In addition, activating p38/MAPK signaling in the absence of pathogens, is sufficient to drive SKN-1-dependent loss of somatic fat. These data define a SKN-1- and p38-dependent axis for coordinating pathogen responses, lipid homeostasis, and survival and identify transcriptional redirection, rather than inactivation, as a mechanism for counteracting the pleiotropic consequences of aberrant transcriptional activity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Lipid Metabolism , Pseudomonas Infections/genetics , Transcription Factors/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , Immunity, Innate , MAP Kinase Signaling System , Oxidative Stress , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Transcription Factors/genetics , Transcriptome , p38 Mitogen-Activated Protein Kinases/metabolism
7.
PLoS Pathog ; 15(6): e1007893, 2019 06.
Article in English | MEDLINE | ID: mdl-31206555

ABSTRACT

Fatty acids affect a number of physiological processes, in addition to forming the building blocks of membranes and body fat stores. In this study, we uncover a role for the monounsaturated fatty acid oleate in the innate immune response of the nematode Caenorhabditis elegans. From an RNAi screen for regulators of innate immune defense genes, we identified the two stearoyl-coenzyme A desaturases that synthesize oleate in C. elegans. We show that the synthesis of oleate is necessary for the pathogen-mediated induction of immune defense genes. Accordingly, C. elegans deficient in oleate production are hypersusceptible to infection with diverse human pathogens, which can be rescued by the addition of exogenous oleate. However, oleate is not sufficient to drive protective immune activation. Together, these data add to the known health-promoting effects of monounsaturated fatty acids, and suggest an ancient link between nutrient stores, metabolism, and host susceptibility to bacterial infection.


Subject(s)
Bacterial Infections/immunology , Caenorhabditis elegans/immunology , Immunity, Innate/drug effects , Oleic Acids/pharmacology , Animals , Oleic Acids/immunology
8.
Proc Natl Acad Sci U S A ; 112(50): 15378-83, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26621724

ABSTRACT

Animals in nature are continually challenged by periods of feast and famine as resources inevitably fluctuate, and must allocate somatic reserves for reproduction to abate evolutionary pressures. We identify an age-dependent lipid homeostasis pathway in Caenorhabditis elegans that regulates the mobilization of lipids from the soma to the germline, which supports fecundity but at the cost of survival in nutrient-poor and oxidative stress environments. This trade-off is responsive to the levels of dietary carbohydrates and organismal oleic acid and is coupled to activation of the cytoprotective transcription factor SKN-1 in both laboratory-derived and natural isolates of C. elegans. The homeostatic balance of lipid stores between the somatic and germ cells is mediated by arachidonic acid (omega-6) and eicosapentaenoic acid (omega-3) precursors of eicosanoid signaling molecules. Our results describe a mechanism for resource reallocation within intact animals that influences reproductive fitness at the cost of somatic resilience.


Subject(s)
Caenorhabditis elegans/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Food , Germ Cells/metabolism , Oxidative Stress/drug effects , Aging/drug effects , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/metabolism , Germ Cells/drug effects , Oleic Acid/deficiency , Reproduction/drug effects , Survival Analysis , Vitellogenesis/drug effects
9.
Genes Dev ; 23(4): 496-511, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19240135

ABSTRACT

Rictor is a component of the target of rapamycin complex 2 (TORC2). While TORC2 has been implicated in insulin and other growth factor signaling pathways, the key inputs and outputs of this kinase complex remain unknown. We identified mutations in the Caenorhabditis elegans homolog of rictor in a forward genetic screen for increased body fat. Despite high body fat, rictor mutants are developmentally delayed, small in body size, lay an attenuated brood, and are short-lived, indicating that Rictor plays a critical role in appropriately partitioning calories between long-term energy stores and vital organismal processes. Rictor is also necessary to maintain normal feeding on nutrient-rich food sources. In contrast to wild-type animals, which grow more rapidly on nutrient-rich bacterial strains, rictor mutants display even slower growth, a further reduced body size, decreased energy expenditure, and a dramatically extended life span, apparently through inappropriate, decreased consumption of nutrient-rich food. Rictor acts directly in the intestine to regulate fat mass and whole-animal growth. Further, the high-fat phenotype of rictor mutants is genetically dependent on akt-1, akt-2, and serum and glucocorticoid-induced kinase-1 (sgk-1). Alternatively, the life span, growth, and reproductive phenotypes of rictor mutants are mediated predominantly by sgk-1. These data indicate that Rictor/TORC2 is a nutrient-sensitive complex with outputs to AKT and SGK to modulate the assessment of food quality and signal to fat metabolism, growth, feeding behavior, reproduction, and life span.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Carrier Proteins/metabolism , Feeding Behavior/physiology , Lipid Metabolism/physiology , Longevity/physiology , Adaptor Proteins, Signal Transducing , Adipose Tissue/metabolism , Animals , Boron Compounds/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Diet , Fixatives/metabolism , Immediate-Early Proteins/metabolism , Insulin/metabolism , Intestinal Mucosa/metabolism , Mutation/genetics , Oncogene Protein v-akt/metabolism , Oxazines/metabolism , Protein Serine-Threonine Kinases/metabolism , Rapamycin-Insensitive Companion of mTOR Protein , Reproduction/physiology , Signal Transduction , Somatomedins/metabolism
10.
Development ; 140(17): 3601-12, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23884442

ABSTRACT

The target of rapamycin complex 2 (TORC2) pathway is evolutionarily conserved and regulates cellular energetics, growth and metabolism. Loss of function of the essential TORC2 subunit Rictor (RICT-1) in Caenorhabditis elegans results in slow developmental rate, reduced brood size, small body size, increased fat mass and truncated lifespan. We performed a rict-1 suppressor RNAi screen of genes encoding proteins that possess the phosphorylation sequence of the AGC family kinase SGK, a key downstream effector of TORC2. Only RNAi to dpy-21 suppressed rict-1 slow developmental rate. DPY-21 functions canonically in the ten-protein dosage compensation complex (DCC) to downregulate the expression of X-linked genes only in hermaphroditic worms. However, we find that dpy-21 functions outside of its canonical role, as RNAi to dpy-21 suppresses TORC2 mutant developmental delay in rict-1 males and hermaphrodites. RNAi to dpy-21 normalized brood size and fat storage phenotypes in rict-1 mutants, but failed to restore normal body size and normal lifespan. Further dissection of the DCC via RNAi revealed that other complex members phenocopy the dpy-21 suppression of rict-1, as did RNAi to the DCC effectors set-1 and set-4, which methylate histone 4 on lysine 20 (H4K20). TORC2/rict-1 animals show dysregulation of H4K20 mono- and tri-methyl silencing epigenetic marks, evidence of altered DCC, SET-1 and SET-4 activity. DPY-21 protein physically interacts with the protein kinase SGK-1, suggesting that TORC2 directly regulates the DCC. Together, the data suggest non-canonical, negative regulation of growth and reproduction by DPY-21 via DCC, SET-1 and SET-4 downstream of TORC2 in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Carrier Proteins/metabolism , Dosage Compensation, Genetic/genetics , Energy Metabolism/physiology , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Adaptor Proteins, Signal Transducing , Animals , Blotting, Western , Body Size/genetics , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Clutch Size/genetics , DNA Primers/genetics , Energy Metabolism/genetics , Epigenesis, Genetic/physiology , Female , Histone-Lysine N-Methyltransferase/metabolism , Longevity/genetics , Male , Mechanistic Target of Rapamycin Complex 2 , Methyltransferases/metabolism , Multiprotein Complexes/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Rapamycin-Insensitive Companion of mTOR Protein
11.
PLoS Genet ; 9(10): e1003908, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24204312

ABSTRACT

Lysosomes are membrane-bound organelles that contain acid hydrolases that degrade cellular proteins, lipids, nucleic acids, and oligosaccharides, and are important for cellular maintenance and protection against age-related decline. Lysosome related organelles (LROs) are specialized lysosomes found in organisms from humans to worms, and share many of the features of classic lysosomes. Defective LROs are associated with human immune disorders and neurological disease. Caenorhabditis elegans LROs are the site of concentration of vital dyes such as Nile red as well as age-associated autofluorescence. Even though certain short-lived mutants have high LRO Nile red and high autofluorescence, and other long-lived mutants have low LRO Nile red and low autofluorescence, these two biologies are distinct. We identified a genetic pathway that modulates aging-related LRO phenotypes via serotonin signaling and the gene kat-1, which encodes a mitochondrial ketothiolase. Regulation of LRO phenotypes by serotonin and kat-1 in turn depend on the proton-coupled, transmembrane transporter SKAT-1. skat-1 loss of function mutations strongly suppress the high LRO Nile red accumulation phenotype of kat-1 mutation. Using a systems approach, we further analyzed the role of 571 genes in LRO biology. These results highlight a gene network that modulates LRO biology in a manner dependent upon the conserved protein kinase TOR complex 2. The results implicate new genetic pathways involved in LRO biology, aging related physiology, and potentially human diseases of the LRO.


Subject(s)
Aging/genetics , Gene Regulatory Networks , Lysosomes/genetics , Organelles/genetics , Acetyl-CoA C-Acyltransferase/genetics , Aging/pathology , Animals , Caenorhabditis elegans , Gene Expression Regulation , Humans , Lysosomes/metabolism , Lysosomes/pathology , Mechanistic Target of Rapamycin Complex 2 , Metabolic Networks and Pathways , Mitochondria/genetics , Mitochondria/metabolism , Multiprotein Complexes/genetics , Organelles/metabolism , TOR Serine-Threonine Kinases/genetics
12.
Diabetes ; 73(2): 260-279, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37934943

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as nonalcoholic fatty liver disease [NAFLD]) and metabolic dysfunction-associated steatohepatitis (MASH, formerly known as nonalcoholic steatohepatitis [NASH]) are leading chronic liver diseases, driving cirrhosis, hepatocellular carcinoma, and mortality. MASLD/MASH is associated with increased senescence proteins, including Activin A, and senolytics have been proposed as a therapeutic approach. To test the role of Activin A, we induced hepatic expression of Activin A in a murine MASLD/MASH model. Surprisingly, overexpression of hepatic Activin A dramatically mitigated MASLD, reducing liver steatosis and inflammation as well as systemic fat accumulation, while improving insulin sensitivity. Further studies identified a dramatic decrease in the lipid-associated macrophages marker glycoprotein NMB (Gpnmb) by Activin A, and Gpnmb knockdown in the same model produced similar benefits and transcriptional changes to Activin A expression. These studies reveal a surprising protective role for Activin A in MASLD and the potential for SASP proteins to have context-specific beneficial effects. Moreover, they implicate both Activin A and Gpnmb as potential therapeutic targets for this condition.


Subject(s)
Activins , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Activins/genetics , Activins/metabolism , Eye Proteins , Membrane Glycoproteins/genetics , Transcription Factors
13.
J Biol Chem ; 287(35): 29579-88, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22773877

ABSTRACT

Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (Lrictor(KO)) are unable to respond normally to insulin. In response to insulin, Lrictor(KO) mice failed to inhibit hepatic glucose output. Lrictor(KO) mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. Lrictor(KO) mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3ß, PRAS40, AS160, and Tsc2. Lrictor(KO) mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of Lrictor(KO) mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism.


Subject(s)
Lipogenesis/physiology , Liver/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cholesterol/biosynthesis , Cholesterol/genetics , Fatty Acids/genetics , Fatty Acids/metabolism , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation/physiology , Glucose/genetics , Glucose/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Hep G2 Cells , Humans , Insulin/genetics , Insulin/metabolism , Insulin Resistance/physiology , Mice , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation/physiology , Proto-Oncogene Proteins c-akt/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Trans-Activators/genetics , Transcription Factors/genetics , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
14.
Cell Death Differ ; 30(8): 1869-1885, 2023 08.
Article in English | MEDLINE | ID: mdl-37460667

ABSTRACT

The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.


Subject(s)
Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Mitochondrial Permeability Transition Pore/analysis , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Consensus , Mitochondria/metabolism , Mitochondrial Membranes/metabolism
15.
Elife ; 122023 08 22.
Article in English | MEDLINE | ID: mdl-37606250

ABSTRACT

Biguanides, including the world's most prescribed drug for type 2 diabetes, metformin, not only lower blood sugar, but also promote longevity in preclinical models. Epidemiologic studies in humans parallel these findings, indicating favorable effects of metformin on longevity and on reducing the incidence and morbidity associated with aging-related diseases. Despite this promise, the full spectrum of molecular effectors responsible for these health benefits remains elusive. Through unbiased screening in Caenorhabditis elegans, we uncovered a role for genes necessary for ether lipid biosynthesis in the favorable effects of biguanides. We demonstrate that biguanides prompt lifespan extension by stimulating ether lipid biogenesis. Loss of the ether lipid biosynthetic machinery also mitigates lifespan extension attributable to dietary restriction, target of rapamycin (TOR) inhibition, and mitochondrial electron transport chain inhibition. A possible mechanistic explanation for this finding is that ether lipids are required for activation of longevity-promoting, metabolic stress defenses downstream of the conserved transcription factor skn-1/Nrf. In alignment with these findings, overexpression of a single, key, ether lipid biosynthetic enzyme, fard-1/FAR1, is sufficient to promote lifespan extension. These findings illuminate the ether lipid biosynthetic machinery as a novel therapeutic target to promote healthy aging.


Metformin is the drug most prescribed to treat type 2 diabetes around the world and has been in clinical use since 1950. The drug belongs to a family of compounds known as biguanides which reduce blood sugar, making them an effective treatment against type 2 diabetes. More recently, biguanides have been found to have other health benefits, including limiting the growth of various cancer cells and improving the lifespan and long-term health of several model organisms. Epidemiologic studies also suggest that metformin may increase the lifespan of humans and reduce the incidence of age-related illnesses such as cardiovascular disease, cancer and dementia. Given the safety and effectiveness of metformin, understanding how it exerts these desirable effects may allow scientists to discover new mechanisms to promote healthy aging. The roundworm Caenorhabditis elegans is an ideal organism for studying the lifespan-extending effects of metformin. It has an average lifespan of two weeks, a genome that is relatively easy to manipulate, and a transparent body that enables scientists to observe cellular and molecular events in living worms. To discover the genes that enable metformin's lifespan-extending properties, Cedillo, Ahsan et al. systematically switched off the expression of about 1,000 genes involved in C. elegans metabolism. They then screened for genes which impaired the action of biguanides when inactivated. This ultimately led to the identification of a set of genes involved in promoting a longer lifespan. Cedillo, Ahsan et al. then evaluated how these genes impacted other well-described pathways involved in longevity and stress responses. The analysis indicated that a biguanide drug called phenformin (which is similar to metformin) increases the synthesis of ether lipids, a class of fats that are critical components of cellular membranes. Indeed, genetically mutating the three major enzymes required for ether lipid production stopped the biguanide from extending the worms' lifespans. Critically, inactivating these genes also prevented lifespan extension through other known strategies, such as dietary restriction and inhibiting the cellular organelle responsible for producing energy. Cedillo, Ahsan et al. also showed that increasing ether lipid production alters the activity of a well-known longevity and stress response factor called SKN-1, and this change alone is enough to extend the lifespan of worms. These findings suggest that promoting the production of ether lipids could lead to healthier aging. However, further studies, including clinical trials, will be required to determine whether this is a viable approach to promote longevity and health in humans.


Subject(s)
Antimalarials , Diabetes Mellitus, Type 2 , Metformin , Humans , Animals , Caenorhabditis elegans/genetics , Longevity , Ethyl Ethers , Ethers , Lipids
16.
Aging Cell ; 21(11): e13718, 2022 11.
Article in English | MEDLINE | ID: mdl-36181246

ABSTRACT

Riboflavin is an essential cofactor in many enzymatic processes and in the production of flavin adenine dinucleotide (FAD). Here, we report that the partial depletion of riboflavin through knockdown of the C. elegans riboflavin transporter 1 (rft-1) promotes metabolic health by reducing intracellular flavin concentrations. Knockdown of rft-1 significantly increases lifespan in a manner dependent upon AMP-activated protein kinase (AMPK)/aak-2, the mitochondrial unfolded protein response, and FOXO/daf-16. Riboflavin depletion promotes altered energetic and redox states and increases adiposity, independent of lifespan genetic dependencies. Riboflavin-depleted animals also exhibit the activation of caloric restriction reporters without any reduction in caloric intake. Our findings indicate that riboflavin depletion activates an integrated hormetic response that promotes lifespan and healthspan in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Longevity/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Hormesis , Riboflavin/metabolism , Forkhead Transcription Factors/metabolism
17.
Contemp Clin Trials ; 122: 106909, 2022 11.
Article in English | MEDLINE | ID: mdl-36087842

ABSTRACT

BACKGROUND: Obesity affects more than one-third of adults in the U.S., and effective treatment options are urgently needed. Oxytocin administration induces weight loss in animal models of obesity via effects on caloric intake, energy expenditure, and fat metabolism. We study intranasal oxytocin, an investigational drug shown to reduce caloric intake in humans, as a potential novel treatment for obesity. METHODS: We report the rationale, design, methods, and biostatistical analysis plan of a randomized, double-blind, placebo-controlled clinical trial of intranasal oxytocin for weight loss (primary endpoint) in adults with obesity. Participants (aged 18-45 years) were randomly allocated (1:1) to oxytocin (four times daily over eight weeks) versus placebo. Randomization was stratified by biological sex and BMI (30 to <35, 35 to <40, ≥40 kg/m2). We investigate the efficacy, safety, and mechanisms of oxytocin administration in reducing body weight. Secondary endpoints include changes in resting energy expenditure, body composition, caloric intake, metabolic profile, and brain activation via functional magnetic resonance imaging in response to food images and during an impulse control task. Safety and tolerability (e.g., review of adverse events, vital signs, electrocardiogram, comprehensive metabolic panel) are assessed throughout the study and six weeks after treatment completion. RESULTS: Sixty-one male and female participants aged 18-45 years were randomized (mean age 34 years, mean BMI 37 kg/m2). The study sample is diverse with 38% identifying as non-White and 20% Hispanic. CONCLUSION: Investigating intranasal oxytocin's efficacy, safety, and mechanisms as an anti-obesity medication will advance the search for optimal treatment strategies for obesity and its associated severe sequelae.


Subject(s)
Obesity , Oxytocin , Adult , Animals , Female , Humans , Male , Administration, Intranasal , Double-Blind Method , Obesity/drug therapy , Oxytocin/therapeutic use , Treatment Outcome , Weight Loss , Middle Aged
18.
Cell Rep ; 37(1): 109785, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34610303

ABSTRACT

A hallmark of type 2 diabetes (T2D) is hepatic resistance to insulin's glucose-lowering effects. The serum- and glucocorticoid-regulated family of protein kinases (SGK) is activated downstream of mechanistic target of rapamycin complex 2 (mTORC2) in response to insulin in parallel to AKT. Surprisingly, despite an identical substrate recognition motif to AKT, which drives insulin sensitivity, pathological accumulation of SGK1 drives insulin resistance. Liver-specific Sgk1-knockout (Sgk1Lko) mice display improved glucose tolerance and insulin sensitivity and are protected from hepatic steatosis when fed a high-fat diet. Sgk1 promotes insulin resistance by inactivating AMP-activated protein kinase (AMPK) via phosphorylation on inhibitory site AMPKαSer485/491. We demonstrate that SGK1 is dominant among SGK family kinases in regulation of insulin sensitivity, as Sgk1, Sgk2, and Sgk3 triple-knockout mice have similar increases in hepatic insulin sensitivity. In aggregate, these data suggest that targeting hepatic SGK1 may have therapeutic potential in T2D.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Immediate-Early Proteins/metabolism , Liver/metabolism , Protein Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/antagonists & inhibitors , Animals , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat , Forkhead Box Protein O1/metabolism , Glucose/metabolism , Immediate-Early Proteins/deficiency , Immediate-Early Proteins/genetics , Insulin/metabolism , Insulin Resistance , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Guide, Kinetoplastida/metabolism , Signal Transduction
19.
Methods Mol Biol ; 2144: 111-123, 2020.
Article in English | MEDLINE | ID: mdl-32410029

ABSTRACT

Gas chromatography-mass spectrometry (GC-MS) enables sensitive detection and relative quantification of fatty acids. In Caenorhabditis elegans, the use of GC-MS can corroborate findings from common staining methodologies, providing great resolution on the lipid species altered in abundance in aging, genetic mutants, or with dietary or pharmacologic manipulation. Here we describe a method to quantitate relative abundance of fatty acids in total worm lipid extracts, as well as a method that quantitates fatty acids following separation into neutral lipid pools (triacylglycerols and cholesteryl esters) versus more polar lipids (phospholipids) by solid-phase extraction (SPE).


Subject(s)
Caenorhabditis elegans/genetics , Fatty Acids/genetics , Gas Chromatography-Mass Spectrometry/methods , Lipids/genetics , Animals , Fatty Acids/chemistry , Fatty Acids/isolation & purification , Lipids/chemistry , Lipids/isolation & purification
20.
Autophagy ; 15(10): 1852-1853, 2019 10.
Article in English | MEDLINE | ID: mdl-31313620

ABSTRACT

A wide variety of genetic, pharmacological and nutrient manipulations that extend lifespan in model organisms do so in a manner dependent upon increased autophagic flux. However, our recent findings suggest that when mitochondrial membrane integrity is compromised, macroautophagy/autophagy can be detrimental. In C. elegans lacking the serine/threonine kinase mechanistic target of rapamycin kinase complex 2 and its downstream effector SGK-1 (Serum- and Glucocorticoid-inducible Kinase homolog), lifespan is shortened in spite of increased levels of autophagy, whereas reducing autophagy restores normal lifespan. This is due to a concomitant defect in mitochondrial permeability in mutants defective in either SGK-1 or mechanistic target of rapamycin kinase complex 2, attributable to increased VDAC-1 (VDAC Voltage Dependent Anion Channel homolog) protein level. More generally, we find that induction of mitochondrial permeability reverses each and every tested paradigm of autophagy-dependent lifespan extension and, further, exacerbates ischemia-reperfusion injury. In this punctum, we discuss our finding that autophagy with increased mitochondrial permeability is a detrimental combination conserved from nematode to mammals.


Subject(s)
Autophagy/physiology , Animals , Animals, Genetically Modified , Autophagy/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Humans , Mechanistic Target of Rapamycin Complex 2/antagonists & inhibitors , Mice , Mice, Knockout , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Permeability Transition Pore , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction/drug effects , Sirolimus/pharmacology , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL