Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 185(16): 2936-2951.e19, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931021

ABSTRACT

We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , HLA-A Antigens , Histocompatibility Antigens Class I , Humans
2.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33275900

ABSTRACT

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Subject(s)
Amino Acid Substitution , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Aspartic Acid/analysis , Aspartic Acid/genetics , COVID-19/epidemiology , Genome, Viral , Glycine/analysis , Glycine/genetics , Humans , Mutation , SARS-CoV-2/growth & development , United Kingdom/epidemiology , Virulence , Whole Genome Sequencing
3.
Bioinformatics ; 36(6): 1681-1688, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31693070

ABSTRACT

MOTIVATION: Influenza viruses represent a global public health burden due to annual epidemics and pandemic potential. Due to a rapidly evolving RNA genome, inter-species transmission, intra-host variation, and noise in short-read data, reads can be lost during mapping, and de novo assembly can be time consuming and result in misassembly. We assessed read loss during mapping and designed a graph-based classifier, VAPOR, for selecting mapping references, assembly validation and detection of strains of non-human origin. RESULTS: Standard human reference viruses were insufficient for mapping diverse influenza samples in simulation. VAPOR retrieved references for 257 real whole-genome sequencing samples with a mean of >99.8% identity to assemblies, and increased the proportion of mapped reads by up to 13.3% compared to standard references. VAPOR has the potential to improve the robustness of bioinformatics pipelines for surveillance and could be adapted to other RNA viruses. AVAILABILITY AND IMPLEMENTATION: VAPOR is available at https://github.com/connor-lab/vapor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing , Influenza, Human , Algorithms , Genome , Humans , Sequence Analysis, DNA , Software
4.
Virus Evol ; 8(2): veac080, 2022.
Article in English | MEDLINE | ID: mdl-36533153

ABSTRACT

The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organization as Alpha. Originating in early autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogenetic branch with an increased evolutionary rate, along which only two sequences have been sampled. Alpha genomes comprise a well-supported monophyletic clade within which the evolutionary rate is typical of SARS-CoV-2. The Alpha epidemic continued to grow despite the continued restrictions on social mixing across the UK and the imposition of new restrictions, in particular, the English national lockdown in November 2020. While these interventions succeeded in reducing the absolute number of cases, the impact of these non-pharmaceutical interventions was predominantly to drive the decline of the SARS-CoV-2 lineages that preceded Alpha. We investigate the only two sampled sequences that fall on the branch ancestral to Alpha. We find that one is likely to be a true intermediate sequence, providing information about the order of mutational events that led to Alpha. We explore alternate hypotheses that can explain how Alpha acquired a large number of mutations yet remained largely unobserved in a region of high genomic surveillance: an under-sampled geographical location, a non-human animal population, or a chronically infected individual. We conclude that the latter provides the best explanation of the observed behaviour and dynamics of the variant, although the individual need not be immunocompromised, as persistently infected immunocompetent hosts also display a higher within-host rate of evolution. Finally, we compare the ancestral branches and mutation profiles of other VOCs and find that Delta appears to be an outlier both in terms of the genomic locations of its defining mutations and a lack of the rapid evolutionary rate on its ancestral branch. As new variants, such as Omicron, continue to evolve (potentially through similar mechanisms), it remains important to investigate the origins of other variants to identify ways to potentially disrupt their evolution and emergence.

5.
Genome Biol ; 22(1): 196, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34210356

ABSTRACT

In response to the ongoing SARS-CoV-2 pandemic in the UK, the COVID-19 Genomics UK (COG-UK) consortium was formed to rapidly sequence SARS-CoV-2 genomes as part of a national-scale genomic surveillance strategy. The network consists of universities, academic institutes, regional sequencing centres and the four UK Public Health Agencies. We describe the development and deployment of CLIMB-COVID, an encompassing digital infrastructure to address the challenge of collecting and integrating both genomic sequencing data and sample-associated metadata produced across the COG-UK network.


Subject(s)
Cloud Computing , Genomics/organization & administration , SARS-CoV-2/genetics , COVID-19/epidemiology , Epidemiological Monitoring , Genome, Viral , Humans , Sequence Analysis, DNA , United Kingdom , User-Computer Interface , Whole Genome Sequencing
6.
Microb Genom ; 2(9): e000086, 2016 09.
Article in English | MEDLINE | ID: mdl-28785418

ABSTRACT

The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.


Subject(s)
Cloud Computing , Computational Biology/methods , Internet , Microbiological Techniques/methods , Software , Genome, Microbial , Genomics , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL