ABSTRACT
Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que-2-hydroxypropylated-ß-cyclodextrin (Que/HP-ß-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que-methyl-ß-cyclodextrin (Que/Me-ß-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-ß-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-ß-CD more than with Me-ß-CD, possibly revealing the presence of more than one HP-ß-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-ß-CD and Que/HP-ß-CD products was approximately 7-40 times and 14-50 times as high as for pure Que at pH 1.2-6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.
Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Brain/drug effects , Drug Compounding/methods , Drug Delivery Systems/methods , Nasal Mucosa/drug effects , Quercetin/administration & dosage , Quercetin/chemistry , beta-Cyclodextrins/chemistry , Administration, Intranasal/methods , Animals , Biological Availability , Drug Stability , Hydrogen-Ion Concentration , Quercetin/pharmacokinetics , Rabbits , Solubility , Transition TemperatureABSTRACT
The aim of the present investigation was to develop matrix tablet formulations for the in vitro controlled release of two new tuberculocidal adamantane aminoethers (compounds III and IV), congeneric to the adamantane derivative SQ109, which is in final clinical trials, and aminoethers (I) and (II), using carefully selected excipients, such as polyvinylpyrrolidone, sodium alginate and lactose. The tablets were prepared using the direct compression method and dissolution experiments were conducted using the US Pharmacopoeia type II apparatus (paddle method) in gastric and intestinal fluids. The results suggest that both analogues, albeit more lipophilic than SQ109, and aminoethers (I) and (II), have the requisite in vitro release characteristics for oral administration. In conclusion, these formulations merit further assessment by conducting in vivo studies, at a later stage.