Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Strahlenther Onkol ; 192(6): 368-76, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26964777

ABSTRACT

PURPOSE: Aim of this single center, retrospective study was to assess the efficacy and safety of linear accelerator-based hypofractionated stereotactic radiotherapy (HFSRT) to the resection cavity of brain metastases after surgical resection. Local control (LC), locoregional control (LRC = new brain metastases outside of the treatment volume), overall survival (OS) as well as acute and late toxicity were evaluated. PATIENTS AND METHODS: 46 patients with large (> 3 cm) or symptomatic brain metastases were treated with HFSRT. Median resection cavity volume was 14.16 cm(3) (range 1.44-38.68 cm(3)) and median planning target volume (PTV) was 26.19 cm(3) (range 3.45-63.97 cm(3)). Patients were treated with 35 Gy in 7 fractions prescribed to the 95-100 % isodose line in a stereotactic treatment setup. LC and LRC were assessed by follow-up magnetic resonance imaging. RESULTS: The 1-year LC rate was 88 % and LRC was 48 %; 57% of all patients showed cranial progression after HFSRT (4% local, 44% locoregional, 9% local and locoregional). The median follow-up was 19 months; median OS for the whole cohort was 25 months. Tumor histology and recursive partitioning analysis score were significant predictors for OS. HFSRT was tolerated well without any severe acute side effects > grade 2 according to CTCAE criteria. CONCLUSION: HFSRT after surgical resection of brain metastases was tolerated well without any severe acute side effects and led to excellent LC and a favorable OS. Since more than half of the patients showed cranial progression after local irradiation of the resection cavity, close patient follow-up is warranted. A prospective evaluation in clinical trials is currently being performed.


Subject(s)
Brain Neoplasms/secondary , Brain Neoplasms/therapy , Cranial Irradiation/methods , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/prevention & control , Radiosurgery/mortality , Adult , Aged , Aged, 80 and over , Brain Neoplasms/mortality , Cranial Irradiation/statistics & numerical data , Female , Germany/epidemiology , Humans , Male , Middle Aged , Neoplasm, Residual , Prevalence , Radiation Dose Hypofractionation , Radiosurgery/statistics & numerical data , Radiotherapy, Adjuvant/mortality , Radiotherapy, Adjuvant/statistics & numerical data , Retrospective Studies , Risk Factors , Survival Rate , Treatment Outcome
2.
Sci Rep ; 11(1): 4590, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633130

ABSTRACT

Data of thoracic in-field reirradiation with two courses of stereotactic body radiotherapy (SBRT) is scarce. Aim of this study is to investigate feasibility and safety of this approach. Patients with a second course of thoracic SBRT and planning target volume (PTV) overlap were analyzed in this retrospective, multicenter study. All plans and clinical data were centrally collected. 27 patients from 8 centers have been amenable for evaluation: 12 with non-small-cell lung cancer, 16 with metastases, treated from 2009 (oldest first course) to 2020 (latest second course). A median dose of 38.5 Gy to the 65%-isodose over a median of 5 fractions was prescribed in the first course and 40 Gy in 5 fractions for the second SBRT-course. Median PTV of the second SBRT was 29.5 cm3, median PTV overlap 22 cm3. With a median interval of 20.2 months between the two SBRT-courses, 1-year OS, and -LCR were 78.3% and 70.3% respectively. 3 patients developed grade 1 and one grade 2 pneumonitis. No grade > 2 toxicity was observed. Peripheral location and dose were the only factors correlating with tumor control. A second SBRT-course with PTV overlap appears safe and achieves reasonable local control.


Subject(s)
Lung Neoplasms/radiotherapy , Radiosurgery/methods , Adult , Aged , Aged, 80 and over , Female , Germany , Humans , Lung Neoplasms/diagnostic imaging , Male , Middle Aged , Retrospective Studies , Salvage Therapy
3.
Cancer Med ; 7(6): 2319-2327, 2018 06.
Article in English | MEDLINE | ID: mdl-29696815

ABSTRACT

Brain metastases show a recurrence rate of about 50% after surgical resection. Adjuvant radiotherapy can prevent progression; however, whole-brain radiotherapy (WBRT) can be associated with significant side effects. Local hypofractionated stereotactic radiotherapy (HFSRT) is a good alternative to provide local control with minimal toxicity. In this multicenter analysis, we evaluated the treatment outcome of local HFSRT after resection brain metastases in 181 patients. Patient's characteristics, treatment data as well as follow-up data were collected and analyzed with special focus on local control, locoregional control and survival. After a median follow-up of 12.6 months (range 0.3-80.2 months), the crude rate for local control was 80.5%; 1- and 2-year local recurrence-free survival rates were 75% and 70% (median not reached). Resection cavity size was a significant predictor for local recurrence (P = 0.033). The median overall survival was 16.0 months. Both graded prognostic assessment score and recursive partitioning analysis were accurate predictors of survival. HFSRT leads to excellent local control and has a high potential to consolidate results after surgery; acute and late toxicity is low. Distant intracerebral metastases occur frequently during follow-up, and therefore, a close patient monitoring needs to be warranted if whole-brain radiotherapy is omitted.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Stereotaxic Techniques , Young Adult
4.
Cancer Med ; 7(6): 2350-2359, 2018 06.
Article in English | MEDLINE | ID: mdl-29745035

ABSTRACT

In patients undergoing surgical resection of brain metastases, the risk of local recurrence remains high. Adjuvant whole brain radiation therapy (WBRT) can reduce the risk of local relapse but fails to improve overall survival. At two tertiary care centers in Germany, a retrospective study was performed to evaluate the role of hypofractionated stereotactic radiotherapy (HFSRT) in patients with brain metastases after surgical resection. In particular, need for salvage treatment, for example, WBRT, surgery, or stereotactic radiosurgery (SRS), was evaluated. Both intracranial local (LF) and locoregional (LRF) failures were analyzed. A total of 181 patients were treated with HFSRT of the surgical cavity. In addition to the assessment of local control and distant intracranial control, we analyzed treatment modalities for tumor recurrence including surgical strategies and reirradiation. Imaging follow-up for the evaluation of LF and LRF was available in 159 of 181 (88%) patients. A total of 100 of 159 (63%) patients showed intracranial progression after HFSRT. A total of 81 of 100 (81%) patients received salvage therapy. Fourteen of 81 patients underwent repeat surgery, and 78 of 81 patients received radiotherapy as a salvage treatment (53% WBRT). Patients with single or few metastases distant from the initial site or with WBRT in the past were retreated by HFSRT (14%) or SRS, 33%. Some patients developed up to four metachronous recurrences, which could be salvaged successfully. Eight (4%) patients experienced radionecrosis. No other severe side effects (CTCAE≥3) were observed. Postoperative HFSRT to the resection cavity resulted in a crude rate for local control of 80.5%. Salvage therapy for intracranial progression was commonly needed, typically at distant sites. Salvage therapy was performed with WBRT, SRS, and surgery or repeated HFSRT of the resection cavity depending on the tumor spread and underlying histology. Prospective studies are warranted to clarify whether or not the sequence of these therapies is important in terms of quality of life, risk of radiation necrosis, and likelihood of neurological cause of death.


Subject(s)
Brain Neoplasms/surgery , Radiosurgery/methods , Salvage Therapy/methods , Adult , Aged , Aged, 80 and over , Brain Neoplasms/secondary , Female , Humans , Male , Middle Aged , Neoplasm Metastasis , Radiation Dose Hypofractionation , Young Adult
5.
PLoS One ; 12(2): e0173112, 2017.
Article in English | MEDLINE | ID: mdl-28245291

ABSTRACT

PURPOSE: Unambiguous evaluation of glioblastoma (GB) progression is crucial, both for clinical trials as well as day by day routine management of GB patients. 3D-volumetry in the follow-up of GB provides quantitative data on tumor extent and growth, and therefore has the potential to facilitate objective disease assessment. The present study investigated the utility of absolute changes in volume (delta) or regional, segmentation-based subtractions for detecting disease progression in longitudinal MRI follow-ups. METHODS: 165 high resolution 3-Tesla MRIs of 30 GB patients (23m, mean age 60.2y) were retrospectively included in this single center study. Contrast enhancement (CV) and tumor-related signal alterations in FLAIR images (FV) were semi-automatically segmented. Delta volume (dCV, dFV) and regional subtractions (sCV, sFV) were calculated. Disease progression was classified for every follow-up according to histopathologic results, decisions of the local multidisciplinary CNS tumor board and a consensus rating of the neuro-radiologic report. RESULTS: A generalized logistic mixed model for disease progression (yes / no) with dCV, dFV, sCV and sFV as input variables revealed that only dCV was significantly associated with prediction of disease progression (P = .005). Delta volume had a better accuracy than regional, segmentation-based subtractions (79% versus 72%) and a higher area under the curve by trend in ROC curves (.83 versus .75). CONCLUSION: Absolute volume changes of the contrast enhancing tumor part were the most accurate volumetric determinant to detect progressive disease in assessment of GB and outweighed FLAIR changes as well as regional, segmentation-based image subtractions. This parameter might be useful in upcoming objective response criteria for glioblastoma.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Aged , Contrast Media , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Models, Theoretical , Retrospective Studies
6.
J Neurosurg Sci ; 60(3): 357-66, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27071010

ABSTRACT

Brain metastases are a common problem in solid malignancies and still represent a major cause of morbidity and mortality. With the ongoing improvement in systemic therapies, the expectations on the efficacy of brain metastases directed treatment options are growing. As local therapies against brain metastases continue to evolve, treatment patterns have shifted from a palliative "one-treatment-fits-all" towards an individualized, patient adapted approach. In this article we review the evidence for stereotactic radiation treatment based on the current literature. Stereotactic radiosurgery (SRS) as a local high precision approach for the primary treatment of asymptomatic brain metastases has gained wide acceptance. It leads to lasting tumor control with only minor side effects compared to whole brain radiotherapy, since there is only little dose delivered to the healthy brain. The same holds true for hypofractionated stereotactic radiotherapy (HFSRT) for large metastases or for lesions close to organs at risk (e.g. the brainstem). New treatment indications such as neoadjuvant SRS followed by surgical resection or postoperative local therapy to the resection cavity show promising data and are also highlighted in this manuscript. With the evolution of local treatment options, optimal patient selection becomes more and more crucial. This article aims to aid decision making by outlining prognostic factors, treatment techniques and indications and common dose prescriptions.


Subject(s)
Brain Neoplasms/surgery , Brain/surgery , Neoplasm Metastasis/therapy , Neurosurgical Procedures , Radiosurgery , Humans , Kaplan-Meier Estimate , Radiosurgery/methods
7.
Front Immunol ; 6: 556, 2015.
Article in English | MEDLINE | ID: mdl-26579130

ABSTRACT

Heat-shock protein 70 (Hsp70) is frequently found on the plasma membrane of a large number of malignant tumors including non-small cell lung cancer (NSCLC) and gets released into the blood circulation in lipid vesicles. On the one hand, a membrane (m)Hsp70-positive phenotype correlates with a high aggressiveness of the tumor; on the other hand, mHsp70 serves as a target for natural killer (NK) cells that had been pre-stimulated with Hsp70-peptide TKD plus low-dose interleukin-2 (TKD/IL-2). Following activation, NK cells show an up-regulated expression of activatory C-type lectin receptors, such as CD94/NKG2C, NKG2D, and natural cytotoxicity receptors (NCRs; NKp44, NKp46, and NKp30) and thereby gain the capacity to kill mHsp70-positive tumor cells. With respect to these results, the efficacy of ex vivo TKD/IL-2 stimulated, autologous NK cells is currently tested in a proof-of-concept phase II clinical trial in patients with squamous cell NSCLC after radiochemotherapy (RCT) at the TUM. Inclusion criteria are histological proven, non-resectable NSCLC in stage IIIA/IIIB, clinical responses to RCT and a mHsp70-positive tumor phenotype. The mHsp70 status is determined in the serum of patients using the lipHsp70 ELISA test, which enables the quantification of liposomal and free Hsp70. Squamous cell and adeno NSCLC patients had significantly higher serum Hsp70 levels than healthy controls. A significant correlation of serum Hsp70 levels with the gross tumor volume was shown for adeno and squamous cell NSCLC. However, significantly elevated ratios of activated CD69(+)/CD94(+) NK cells that are associated with low serum Hsp70 levels were observed only in patients with squamous cell lung cancer. These data might provide a first hint that squamous cell NSCLC is more immunogenic than adeno NSCLC.

8.
Front Oncol ; 5: 262, 2015.
Article in English | MEDLINE | ID: mdl-26640777

ABSTRACT

While neutron therapy was a highly topical subject in the 70s and 80s, today there are only a few remaining facilities offering fast neutron therapy (FNT). Nevertheless, up to today more than 30,000 patients were treated with neutron therapy. For some indications like salivary gland tumors and malignant melanoma, there is clinical evidence that the addition of FNT leads to superior local control compared to photon treatment alone. FNT was available in Munich from 1985 until 2000 at the Reactor Neutron Therapy (RENT) facility. Patient treatment continued at the new research reactor FRM II in 2007 under improved treatment conditions, and today it can still be offered to selected patients as an individual treatment option. As there is a growing interest in high-linear energy transfer (LET) therapy with new hadron therapy centers emerging around the globe, the clinical data generated by neutron therapy might help to develop biologically driven treatment planning algorithms. Also FNT might experience its resurgence as a combinational partner of modern immunotherapies.

9.
Radiat Oncol ; 10: 100, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25900186

ABSTRACT

BACKGROUND: Textural features in FDG-PET have been shown to provide prognostic information in a variety of tumor entities. Here we evaluate their predictive value for recurrence and prognosis in NSCLC patients receiving primary stereotactic radiation therapy (SBRT). METHODS: 45 patients with early stage NSCLC (T1 or T2 tumor, no lymph node or distant metastases) were included in this retrospective study and followed over a median of 21.4 months (range 3.1-71.1). All patients were considered non-operable due to concomitant disease and referred to SBRT as the primary treatment modality. Pre-treatment FDG-PET/CT scans were obtained from all patients. SUV and volume-based analysis as well as extraction of textural features based on neighborhood gray-tone difference matrices (NGTDM) and gray-level co-occurence matrices (GLCM) were performed using InterView Fusion™ (Mediso Inc., Budapest). The ability to predict local recurrence (LR), lymph node (LN) and distant metastases (DM) was measured using the receiver operating characteristic (ROC). Univariate and multivariate analysis of overall and disease-specific survival were executed. RESULTS: 7 out of 45 patients (16%) experienced LR, 11 (24%) LN and 11 (24%) DM. ROC revealed a significant correlation of several textural parameters with LR with an AUC value for entropy of 0.872. While there was also a significant correlation of LR with tumor size in the overall cohort, only texture was predictive when examining T1 (tumor diameter < = 3 cm) and T2 (>3 cm) subgroups. No correlation of the examined PET parameters with LN or DM was shown. In univariate survival analysis, both heterogeneity and tumor size were predictive for disease-specific survival, but only texture determined by entropy was determined as an independent factor in multivariate analysis (hazard ratio 7.48, p = .016). Overall survival was not significantly correlated to any examined parameter, most likely due to the high comorbidity in our cohort. CONCLUSIONS: Our study adds to the growing evidence that tumor heterogeneity as described by FDG-PET texture is associated with response to radiation therapy in NSCLC. The results may be helpful into identifying patients who might profit from an intensified treatment regime, but need to be verified in a prospective patient cohort before being incorporated into routine clinical practice.


Subject(s)
Adenocarcinoma/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Squamous Cell/diagnostic imaging , Image Processing, Computer-Assisted , Lung Neoplasms/diagnostic imaging , Positron-Emission Tomography , Tomography, X-Ray Computed , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Aged , Aged, 80 and over , Area Under Curve , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/surgery , Disease-Free Survival , Female , Fluorine Radioisotopes , Fluorodeoxyglucose F18 , Humans , Kaplan-Meier Estimate , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Male , Multimodal Imaging , Neoplasm Recurrence, Local , Neoplasm Staging , ROC Curve , Radiopharmaceuticals , Retrospective Studies
10.
Front Immunol ; 6: 162, 2015.
Article in English | MEDLINE | ID: mdl-25926832

ABSTRACT

Heat shock protein 70 (Hsp70) is frequently overexpressed in tumor cells. An unusual cell surface localization could be demonstrated on a large variety of solid tumors including lung, colorectal, breast, squamous cell carcinomas of the head and neck, prostate and pancreatic carcinomas, glioblastomas, sarcomas and hematological malignancies, but not on corresponding normal tissues. A membrane (m)Hsp70-positive phenotype can be determined either directly on single cell suspensions of tumor biopsies by flow cytometry using cmHsp70.1 monoclonal antibody or indirectly in the serum of patients using a novel lipHsp70 ELISA. A mHsp70-positive tumor phenotype has been associated with highly aggressive tumors, causing invasion and metastases and resistance to cell death. However, natural killer (NK), but not T cells were found to kill mHsp70-positive tumor cells after activation with a naturally occurring Hsp70 peptide (TKD) plus low dose IL-2 (TKD/IL-2). Safety and tolerability of ex vivo TKD/IL-2 stimulated, autologous NK cells has been demonstrated in patients with metastasized colorectal and non-small cell lung cancer (NSCLC) in a phase I clinical trial. Based on promising clinical results of the previous study, a phase II randomized clinical study was initiated in 2014. The primary objective of this multicenter proof-of-concept trial is to examine whether an adjuvant treatment of NSCLC patients after platinum-based radiochemotherapy (RCTx) with TKD/IL-2 activated, autologous NK cells is clinically effective. As a mHsp70-positive tumor phenotype is associated with poor clinical outcome only mHsp70-positive tumor patients will be recruited into the trial. The primary endpoint of this study will be the comparison of the progression-free survival of patients treated with ex vivo activated NK cells compared to patients who were treated with RCTx alone. As secondary endpoints overall survival, toxicity, quality-of-life, and biological responses will be determined in both study groups.

11.
Front Immunol ; 5: 307, 2014.
Article in English | MEDLINE | ID: mdl-25071768

ABSTRACT

Members of the heat shock protein 70 (HSP70) family play an important role in assisting protein folding, preventing protein aggregation and transport of proteins across membranes under physiological conditions. Following environmental (i.e., irradiation, chemotherapy), physiological (i.e., cell growth, differentiation), and pathophysiological (i.e., inflammation, tumorigenesis) stress, the synthesis of heat shock proteins (HSPs) is highly up-regulated, whereas protein synthesis in general is reduced. In contrast to normal cells, many tumor entities including hepatocellular carcinoma (HCC) overexpress HSP70, the major-stress-inducible member of the HSP70 family, present it on their cell surface and secrete it into the extracellular milieu. Herein, the prognostic relevance of serum HSP70 levels in patients with chronic hepatitis (CH; n = 50), liver cirrhosis (LC; n = 46), and HCC (n = 47) was analyzed. Similar to other tumor entities, HSP70 is also present on the surface of primary HCC cells. The staining intensity of intracellular HSP70 in HCC tissue is stronger compared to control and cirrhotic liver sections. HSP70 serum levels in all HCC patients were significantly higher compared to a control group without liver disease (n = 40). No significant age- and gender-related differences in HSP70 serum levels were observed in male and female healthy human volunteers (n = 86). Patients with CH (n = 50) revealed significantly higher HSP70 serum levels compared to the control group, however, these values were significantly lower than those of HCC patients (n = 47). Furthermore, a subgroup of patients with LC who subsequently developed HCC (LC-HCC, n = 13) revealed higher HSP70 serum levels than patients with LC (n = 46, p = 0.05). These data indicate that serum HSP70 levels are consecutively increased in patients with CH, LC and liver carcinomas and thus might have a prognostic value.

12.
Int J Radiat Oncol Biol Phys ; 88(3): 694-700, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24521683

ABSTRACT

PURPOSE: Tumor cells, in contrast to normal cells, frequently overexpress heat shock protein 70 (Hsp70) in the cytosol, present it on their cell surface, and actively release it. Therefore, soluble Hsp70 (sHsp70) was investigated as a potential tumor biomarker for monitoring the outcome of radiation therapy. METHODS AND MATERIALS: Plasma from mice bearing membrane Hsp70 (mHsp70)-positive FaDu human squamous cell carcinoma of the head and neck and spontaneous pancreatic ductal adenocarcinoma (PDAC) was investigated. A cohort of mice with FaDu tumors (0.32 cm(3)) was irradiated with 30 Gy, and plasma was collected 24 hours after irradiation, after the tumors had shrunk to 50% of their starting volume and after complete remission. sHsp70 levels in the plasma were quantified by enzyme-linked immunosorbent assay. RESULTS: sHsp70 levels were significantly higher in the blood of tumor-bearing mice than that of control animals. A correlation between increasing sHsp70 plasma levels and tumor volume in the range of 0.01 cm(3) to 0.66 cm(3) was observed. Radiation-induced regression of the tumors was associated with significantly decreased sHsp70 levels, which returned to the level of control animals after complete remission. CONCLUSION: We propose sHsp70 as an innovative biomarker for detecting tumors and for monitoring the clinical outcome of radiation therapy in cancer patients.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Squamous Cell/blood , Disease Models, Animal , HSP70 Heat-Shock Proteins/blood , Head and Neck Neoplasms/blood , Pancreatic Neoplasms/blood , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/radiotherapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/radiotherapy , Cell Line, Tumor , Female , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/radiotherapy , Heterografts , Humans , Mice , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Radiation Dosage , Spheroids, Cellular/metabolism , Spheroids, Cellular/radiation effects , Treatment Outcome , Tumor Burden , Pancreatic Neoplasms
13.
Radiat Oncol ; 9: 131, 2014 Jun 09.
Article in English | MEDLINE | ID: mdl-24912482

ABSTRACT

BACKGROUND: Tumor but not normal cells frequently overexpress heat shock protein 70 (Hsp70) and present it on their cell surface (mHsp70) from where it can be actively released. Therefore, membrane (mHsp70) and soluble Hsp70 (sHsp70) were investigated as potential tumor biomarkers and for monitoring the outcome of radiation therapy. METHODS: Biopsies and blood were collected from patients with squamous cell carcinoma of the head and neck (SCCHN) at different time points (before, during therapy and in the follow-up period). Hsp70 membrane expression was determined on single cell suspensions of tumor biopsies and reference tissues by flow cytometry, sHsp70 protein and antibody levels were determined in the serum of patients and healthy donors by ELISA and NK cell markers that are related to the presence of sHsp70 were analyzed in the patient's peripheral blood lymphocytes (PBL). RESULTS: Tumor biopsies exhibited significantly increased mHsp70 expression levels compared to the reference tissue. Soluble Hsp70 levels were significantly higher in SCCHN patients compared to healthy human volunteers and high mHsp70 expression levels on tumor cells were associated with high sHsp70 levels in the serum of patients. Following surgery and radiotherapy sHsp70 levels in patients dropped in patients without tumor relapse in the follow-up period. In contrast to sHsp70 protein, anti-Hsp70 antibody levels remained nearly unaltered in the serum of SCCHN patients before and after therapy. Furthermore, sHsp70 protein but not anti-Hsp70 antibody levels were found to be associated with the tumor volume in SCCHN patients before start of therapy. The expression densities of the activatory NK cell markers CD56, CD94, NKG2D, NKp30, Nkp44, and NKp46 differed in patients following therapeutic intervention. A significant increase in the density of NKG2D was observed in SCCHN patients in the follow-up period after surgery and radiotherapy. CONCLUSION: We suggest sHsp70 as a potential biomarker for detecting tumors and for monitoring the clinical outcome of radiotherapy in SCCHN patients.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Squamous Cell/radiotherapy , HSP70 Heat-Shock Proteins/blood , Head and Neck Neoplasms/radiotherapy , Killer Cells, Natural/metabolism , Adult , Aged , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/pathology , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Follow-Up Studies , Head and Neck Neoplasms/blood , Head and Neck Neoplasms/pathology , Humans , Killer Cells, Natural/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis , Radiotherapy Dosage , Tumor Burden
14.
Blood ; 107(9): 3537-45, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16449527

ABSTRACT

We describe here the mechanism of platelet adhesion to immobilized von Willebrand factor (VWF) and subsequent formation of platelet-derived microparticles mediated by glycoprotein Ibalpha (GPIbalpha) under high shear stress. As visualized in whole blood perfused in a flow chamber, platelet attachment to VWF involved one or few membrane areas of 0.05 to 0.1 microm(2) that formed discrete adhesion points (DAPs) capable of resisting force in excess of 160 pN. Under the influence of hydrodynamic drag, membrane tethers developed between the moving platelet body and DAPs firmly adherent to immobilized VWF. Continued stretching eventually caused the separation of many such tethers, leaving on the surface tube-shaped or spherical microparticles with a diameter as low as 50 to 100 nm. Adhesion receptors (GPIbalpha, alphaIIbbeta3) and phosphatidylserine were expressed on the surface of these microparticles, which were procoagulant. Shearing platelet-rich plasma at the rate of 10,000 s(-1) in a cone-and-plate viscosimeter increased microparticle counts up to 55-fold above baseline. Blocking the GPIb-VWF interaction abolished microparticle generation in both experimental conditions. Thus, a biomechanical process mediated by GPIbalpha-VWF bonds in rapidly flowing blood may not only initiate platelet arrest onto reactive vascular surfaces but also generate procoagulant microparticles that further enhance thrombus formation.


Subject(s)
Platelet Adhesiveness/physiology , von Willebrand Factor/physiology , Blood Platelets/physiology , Blood Platelets/ultrastructure , Hemorheology , Humans , In Vitro Techniques , Microscopy, Electron , Platelet Glycoprotein GPIb-IX Complex/metabolism , Recombinant Proteins/metabolism , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL