Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Publication year range
1.
Quat Int ; 653-654: 114-126, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37915533

ABSTRACT

The analysis of dental calculus (mineralised dental plaque) has become an increasingly important facet of bioarchaeological research. Although microscopic analysis of microdebris entrapped within dental calculus has revealed important insights into the diet, health, and environment of multiple prehistoric populations, relatively few studies have examined the contributions of this approach to more recent historical periods. In this study, we analyze dental calculus from an English Post-Medieval, middle-class urban skeletal assemblage from Manchester, England using light microscopy. We characterize all types of microremains, observing heavily damaged starch and plant material, high quantities of fungal and yeast spores, the presence of wood particles, plant (cotton) and animal (wool) fibres, as well as limited quantities of microcharcoal and burnt debris. We observe the presence of non-native, imported plant products, including New World maize and potentially tapioca starch. We compare our results to similar studies from earlier time periods to reveal the impacts of the significant economic, social and environmental changes occurring during the Industrial period in England, including changes in food processing, food access, food storage, and air quality. We conclude by outlining important methodological considerations for the future study of Post-Medieval dental calculus and propose potential areas of future research.

2.
Rapid Commun Mass Spectrom ; 36(11): e9286, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35261104

ABSTRACT

RATIONALE: Dental calculus (mineralised dental plaque) is composed primarily of hydroxyapatite. We hypothesise that the carbonate component of dental calculus will reflect the isotopic composition of ingested simple carbohydrates. Therefore, dental calculus carbonates may be an indicator for sugar consumption, and an alternative to bone carbonate in isotopic palaeodiet studies. METHODS: We utilised Fourier transform infrared attenuated total reflectance analysis to characterise the composition and crystallisation of bone and dental calculus before isotope analysis of carbonate. Using a Sercon 20-22 mass spectrometer coupled with a Sercon GSL sample preparation system and an IsoPrime 100 dual inlet mass spectrometer plus Multiprep device to measure carbon, we tested the potential of dental calculus carbonate to identify C4 resources in diet through analysis of δ13 C values in paired bone, calculus and teeth mineral samples. RESULTS: The modern population shows higher δ13 C values in all three tissue carbonates compared to both archaeological populations. Clear differences in dental calculus δ13 C values are observed between the modern and archaeological individuals suggesting potential for utilising dental calculus in isotope palaeodiet studies. The offset between dental calculus and either bone or enamel carbonate δ13 C values is large and consistent in direction, with no consistent offset between the δ13 C values for the three tissues per individual. CONCLUSIONS: Our results support dental calculus carbonate as a new biomaterial to identify C4 sugar through isotope analysis. Greater carbon fractionation in the mouth is likely due to the complex formation of dental calculus as a mineralized biofilm, which results in consistently high δ13 C values compared to bone and enamel.


Subject(s)
Dental Calculus , Sugars , Carbon , Carbon Isotopes/analysis , Carbonates/analysis , Dietary Sugars , Humans , Isotopes/analysis
3.
Proc Natl Acad Sci U S A ; 116(1): 177-186, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30514813

ABSTRACT

Phenotypic variation is critical for the long-term persistence of species and populations. Anthropogenic activities have caused substantial shifts and reductions in phenotypic variation across diverse taxa, but the underlying mechanism(s) (i.e., phenotypic plasticity and/or genetic evolution) and long-term consequences (e.g., ability to recover phenotypic variation) are unclear. Here we investigate the widespread and dramatic changes in adult migration characteristics of wild Chinook salmon caused by dam construction and other anthropogenic activities. Strikingly, we find an extremely robust association between migration phenotype (i.e., spring-run or fall-run) and a single locus, and that the rapid phenotypic shift observed after a recent dam construction is explained by dramatic allele frequency change at this locus. Furthermore, modeling demonstrates that continued selection against the spring-run phenotype could rapidly lead to complete loss of the spring-run allele, and an empirical analysis of populations that have already lost the spring-run phenotype reveals they are not acting as sustainable reservoirs of the allele. Finally, ancient DNA analysis suggests the spring-run allele was abundant in historical habitat that will soon become accessible through a large-scale restoration (i.e., dam removal) project, but our findings suggest that widespread declines and extirpation of the spring-run phenotype and allele will challenge reestablishment of the spring-run phenotype in this and future restoration projects. These results reveal the mechanisms and consequences of human-induced phenotypic change and highlight the need to conserve and restore critical adaptive variation before the potential for recovery is lost.


Subject(s)
Adaptation, Physiological , Ecosystem , Salmon , Adaptation, Physiological/genetics , Alleles , Animal Migration , Animals , Genetic Loci/genetics , Genetic Variation/genetics , Oregon , Salmon/genetics
4.
Proc Biol Sci ; 288(1954): 20210020, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34229485

ABSTRACT

The domestic dog has inhabited the anthropogenic niche for at least 15 000 years, but despite their impact on human strategies, the lives of dogs and their interactions with humans have only recently become a subject of interest to archaeologists. In the Arctic, dogs rely exclusively on humans for food during the winter, and while stable isotope analyses have revealed dietary similarities at some sites, deciphering the details of provisioning strategies have been challenging. In this study, we apply zooarchaeology by mass spectrometry (ZooMS) and liquid chromatography tandem mass spectrometry to dog palaeofaeces to investigate protein preservation in this highly degradable material and obtain information about the diet of domestic dogs at the Nunalleq site, Alaska. We identify a suite of digestive and metabolic proteins from the host species, demonstrating the utility of this material as a novel and viable substrate for the recovery of gastrointestinal proteomes. The recovered proteins revealed that the Nunalleq dogs consumed a range of Pacific salmon species (coho, chum, chinook and sockeye) and that the consumed tissues derived from muscle and bone tissues as well as roe and guts. Overall, the study demonstrated the viability of permafrost-preserved palaeofaeces as a unique source of host and dietary proteomes.


Subject(s)
Hominidae , Proteome , Alaska , Animals , Arctic Regions , Diet/veterinary , Dogs
5.
Oecologia ; 193(2): 461-474, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32424465

ABSTRACT

Fish skeletal remains recovered from two archaeological sites dated in the Middle Holocene of Tierra del Fuego (Argentina) were analysed to describe habitat use patterns by hake in the past and predict changes in a warmer world. Mitochondrial DNA was successfully extracted and amplified from 42 out of 45 first vertebra from ancient hake and phylogenetic analysis assigned all haplotypes to Argentine hake (Merluccius hubbsi). According to osteometry, the Argentine hake recovered from the archaeological site were likely adults ranging 37.2-58.1 cm in standard length. C and N stable isotope analysis showed that currently Argentine hake use foraging grounds deeper than those of Patagonian blenny and pink cusk-eel. Argentine hake, however, had a much broader isotopic niche during the Middle Holocene, when a large part of the population foraged much shallower than contemporary pink cusk-eel. The overall evidence suggests the presence of large numbers of Argentine hake onshore Tierra del Fuego during the Middle Holocene, which allowed exploitation by hunter-gatherer-fisher groups devoid of fishing technology. Interestingly, average SST off Tierra del Fuego during the Middle Holocene was higher than currently (11 °C vs 7 °C) and matched SST in the current southernmost onshore spawning aggregations, at latitude 47 °S. This indicates that increasing SST resulting from global warming will likely result into an increased abundance of adult Argentine hake onshore Tierra del Fuego, as during the Middle Holocene. Furthermore, stable isotope ratios from mollusc shells confirmed a much higher marine primary productivity during the Middle Holocene off Tierra del Fuego.


Subject(s)
Gadiformes , Animals , Argentina , Ecosystem , Global Warming , Phylogeny
6.
Proc Biol Sci ; 285(1882)2018 07 11.
Article in English | MEDLINE | ID: mdl-30051821

ABSTRACT

Right whales (Eubalaena glacialis) were extirpated from the eastern North Atlantic by commercial whaling. Grey whales (Eschrichtius robustus) disappeared from the entire North Atlantic in still-mysterious circumstances. Here, we test the hypotheses that both species previously occurred in the Mediterranean Sea, an area not currently considered part of their historical range. We used ancient DNA barcoding and collagen fingerprinting methods to taxonomically identify a rare set of 10 presumed whale bones from Roman and pre-Roman archaeological sites in the Strait of Gibraltar region, plus an additional bone from the Asturian coast. We identified three right whales, and three grey whales, demonstrating that the ranges of both of these species historically encompassed the Gibraltar region, probably including the Mediterranean Sea as calving grounds. Our results significantly extend the known range of the Atlantic grey whale, and suggest that 2000 years ago, right and grey whales were common when compared with other whale species. The disappearance of right and grey whales from the Mediterranean region is likely to have been accompanied by broader ecosystem impacts, including the disappearance of their predators (killer whales) and a reduction in marine primary productivity. The evidence that these two coastal and highly accessible species were present along the shores of the Roman Empire raises the hypothesis that they may have formed the basis of a forgotten whaling industry.


Subject(s)
Sexual Behavior, Animal , Whales/physiology , Animals , Archaeology , DNA Barcoding, Taxonomic , Homing Behavior , Mediterranean Sea , Whales/genetics
7.
Proc Biol Sci ; 285(1883)2018 07 18.
Article in English | MEDLINE | ID: mdl-30051838

ABSTRACT

Archaeological dental calculus has emerged as a rich source of ancient biomolecules, including proteins. Previous analyses of proteins extracted from ancient dental calculus revealed the presence of the dietary milk protein ß-lactoglobulin, providing direct evidence of dairy consumption in the archaeological record. However, the potential for calculus to preserve other food-related proteins has not yet been systematically explored. Here we analyse shotgun metaproteomic data from 100 archaeological dental calculus samples ranging from the Iron Age to the post-medieval period (eighth century BC to nineteenth century AD) in England, as well as 14 dental calculus samples from contemporary dental patients and recently deceased individuals, to characterize the range and extent of dietary proteins preserved in dental calculus. In addition to milk proteins, we detect proteomic evidence of foodstuffs such as cereals and plant products, as well as the digestive enzyme salivary amylase. We discuss the importance of optimized protein extraction methods, data analysis approaches and authentication strategies in the identification of dietary proteins from archaeological dental calculus. This study demonstrates that proteomic approaches can robustly identify foodstuffs in the archaeological record that are typically under-represented due to their poor macroscopic preservation.


Subject(s)
Dental Calculus/chemistry , Diet/history , Proteome , Archaeology , DNA, Ancient/analysis , England , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, Ancient , History, Medieval
8.
Bioessays ; 37(3): 284-93, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25413709

ABSTRACT

Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7× coverage (mammoth) in 2008 to more than 50× coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics.


Subject(s)
DNA/genetics , High-Throughput Nucleotide Sequencing , Animals , DNA/isolation & purification , DNA Damage , Genome , Humans , Multilocus Sequence Typing , Temperature
9.
J Hum Evol ; 79: 125-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25559298

ABSTRACT

Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and we therefore lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today.


Subject(s)
Microbiota , Paleontology , Dental Calculus/microbiology , Diet , Feces/microbiology , Health/history , High-Throughput Nucleotide Sequencing , History, Ancient , Humans , Metagenomics
10.
Bioessays ; 35(8): 690-5, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23703035

ABSTRACT

The great majority of phenotypic characteristics are complex traits, complicating the identification of the genes underlying their expression. However, both methodological and theoretical progress in genome-wide association studies have resulted in a much better understanding of the underlying genetics of many phenotypic traits, including externally visible characteristics (EVCs) such as eye and hair color. Consequently, it has become possible to predict EVCs from human samples lacking phenotypic information. Predicting EVCs from genetic evidence is clearly appealing for forensic applications involving the personal identification of human remains. Now, a recent paper has reported the genetic determination of eye and hair color in samples up to 800 years old. The ability to predict EVCs from ancient human remains opens up promising perspectives for ancient DNA research, as this could allow studies to directly address archaeological and evolutionary questions related to the temporal and geographical origins of the genetic variants underlying phenotypes.


Subject(s)
DNA, Mitochondrial/genetics , DNA/genetics , Phenotype , Pigmentation/genetics , Archaeology/methods , DNA Fingerprinting , Eye Color , Fossils , Genome, Human , Hair , Humans , Paleontology/methods , Polymorphism, Single Nucleotide
11.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739117

ABSTRACT

The interaction between a host and its microbiome is an area of intense study. For the human host, it is known that the various body-site-associated microbiomes impact heavily on health and disease states. For instance, the oral microbiome is a source of various pathogens and potential antibiotic resistance gene pools. The effect of historical changes to the human host and environment to the associated microbiome, however, has been less well explored. In this review, we characterize several historical and prehistoric events which are considered to have impacted the oral environment and therefore the bacterial communities residing within it. The link between evolutionary changes to the oral microbiota and the significant societal and behavioural changes occurring during the pre-Neolithic, Agricultural Revolution, Industrial Revolution and Antibiotic Era is outlined. While previous studies suggest the functional profile of these communities may have shifted over the centuries, there is currently a gap in knowledge that needs to be filled. Biomolecular archaeological evidence of innate antimicrobial resistance within the oral microbiome shows an increase in the abundance of antimicrobial resistance genes since the advent and widespread use of antibiotics in the modern era. Nevertheless, a lack of research into the prevalence and evolution of antimicrobial resistance within the oral microbiome throughout history hinders our ability to combat antimicrobial resistance in the modern era.


Subject(s)
Anti-Bacterial Agents , Microbiota , Mouth , Humans , Mouth/microbiology , Anti-Bacterial Agents/pharmacology , History, Ancient , Diet , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Drug Resistance, Microbial/genetics , Drug Resistance, Bacterial/genetics , History, Medieval , History, 17th Century , History, 18th Century , History, 16th Century
12.
Sci Rep ; 14(1): 2972, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38453955

ABSTRACT

Humans have a long history of transporting and trading plants, contributing to the evolution of domesticated plants. Theobroma cacao originated in the Neotropics from South America. However, little is known about its domestication and use in these regions. In this study, ceramic residues from a large sample of pre-Columbian cultures from South and Central America were analyzed using archaeogenomic and biochemical approaches. Here we show, for the first time, the widespread use of cacao in South America out of its native Amazonian area of origin, extending back 5000 years, likely supported by cultural interactions between the Amazon and the Pacific coast. We observed that strong genetic mixing between geographically distant cacao populations occurred as early as the middle Holocene, in South America, driven by humans, favoring the adaptation of T. cacao to new environments. This complex history of cacao domestication is the basis of today's cacao tree populations and its knowledge can help us better manage their genetic resources.


Subject(s)
Cacao , Domestication , Humans , Cacao/genetics , South America , Central America
13.
Proc Natl Acad Sci U S A ; 107(7): 2807-12, 2010 Feb 16.
Article in English | MEDLINE | ID: mdl-20133614

ABSTRACT

Although the cultural and nutritive importance of the turkey (Meleagris gallopavo) to precontact Native Americans and contemporary people worldwide is clear, little is known about the domestication of this bird compared to other domesticates. Mitochondrial DNA analysis of 149 turkey bones and 29 coprolites from 38 archaeological sites (200 BC-AD 1800) reveals a unique domesticated breed in the precontact Southwestern United States. Phylogeographic analyses indicate that this domestic breed originated from outside the region, but rules out the South Mexican domestic turkey (Meleagris gallopavo gallopavo) as a progenitor. A strong genetic bottleneck within the Southwest turkeys also reflects intensive human selection and breeding. This study points to at least two occurrences of turkey domestication in precontact North America and illuminates the intensity and sophistication of New World animal breeding practices.


Subject(s)
Animals, Domestic/genetics , Breeding/methods , DNA, Mitochondrial/genetics , Fossils , Phylogeny , Turkeys/genetics , Animals , Base Sequence , Bone and Bones/chemistry , Cluster Analysis , DNA Primers/genetics , Demography , Feces/chemistry , Founder Effect , Geography , Humans , Molecular Sequence Data , Sequence Analysis, DNA , Southwestern United States , Species Specificity
14.
PLoS One ; 18(8): e0289797, 2023.
Article in English | MEDLINE | ID: mdl-37624782

ABSTRACT

Salmon are an essential component of the ecosystem in Tsleil-Waututh Nation's traditional, ancestral, and contemporary unceded territory, centred on present-day Burrard Inlet, BC, Canada, where Tsleil-Waututh people have been harvesting salmon, along with a wide variety of other fishes, for millennia. Tsleil-Waututh Nation is a Coast Salish community that has called the Inlet home since time immemorial. This research assesses the continuity and sustainability of the salmon fishery at təmtəmíxÊ·tən, an ancestral Tsleil-Waututh settlement in the Inlet, over thousands of years before European contact (1792 CE). We apply Zooarchaeology by Mass Spectrometry (ZooMS) analysis to 245 archaeological salmon vertebrae to identify the species that were harvested by the ancestral Tsleil-Waututh community that lived at təmtəmíxÊ·tən. The results demonstrate that Tsleil-Waututh communities consistently and preferentially fished for chum salmon (Oncorhynchus keta) over the period of almost 3,000 years. The consistent abundance indicates a sustainable chum salmon fishery over that time, and a strong salmon-to-people relationship through perhaps 100 generations. This research supports Tsleil-Waututh Nation's stewardship obligations under their ancestral legal principles to maintain conditions that uphold the Nation's way of life.


Subject(s)
Oncorhynchus keta , Salmon , Animals , Archaeology , Ecosystem , Bays , Canada
15.
Am J Biol Anthropol ; 182(1): 126-142, 2023 09.
Article in English | MEDLINE | ID: mdl-37483103

ABSTRACT

OBJECTIVES: We evaluate the potential of paired isotopic analysis of bone carbonate and collagen to examine the diet of post-medieval human and animal populations from England (17th-19th c.), including, for the first time, manufacturing towns in northern England. The potential for identifying C4 crop consumption is explored alongside regional and local patterning in diet by sex and socioeconomic status. MATERIALS AND METHODS: Humans (n = 216) and animals (n = 168) were analyzed from sites in London and northern England for both carbon and nitrogen isotopes of bone collagen (𝛿13 Ccoll , 𝛿15 Ncoll ). Isotopic analysis of bone carbonates (𝛿13 Ccarb , 𝛿18 Ocarb ) was carried out on all humans and 27 animals, using Fourier transform infrared spectroscopy-attenuated total reflectance to assess diagenesis. RESULTS: Variations in diet were observed between and within different populations by geographical location and socioeconomic status. Three pigs and one cow consumed C4 resources, indicating the availability of C4 -fed animal protein. Londoners consumed more animal and marine protein and C4 resources. Middle- and upper-class populations from both London and northern populations also had greater access to these foods compared to those of lower status in the same regions. DISCUSSION: This substantial multi-isotope dataset deriving from bone carbonate and collagen combined from diverse post-medieval urban communities enabled, for the first time, the biomolecular identification of the dynamics of C4 consumption (cane sugar/maize) in England, providing insight into the dynamics of food globalization during this period. We also add substantially to the animal dataset for post-medieval England, providing further insight into animal management during a key moment of agricultural change.


Subject(s)
Collagen , Diet , Humans , Female , Cattle , Animals , Swine , London , Carbon Isotopes/analysis , Diet/history , England , Carbonates
16.
R Soc Open Sci ; 10(9): 230741, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37711146

ABSTRACT

Taxonomic identification of whale bones found during archaeological excavations is problematic due to their typically fragmented state. This difficulty limits understanding of both the past spatio-temporal distributions of whale populations and of possible early whaling activities. To overcome this challenge, we performed zooarchaeology by mass spectrometry on an unprecedented 719 archaeological and palaeontological specimens of probable whale bone from Atlantic European contexts, predominantly dating from ca 3500 BCE to the eighteenth century CE. The results show high numbers of Balaenidae (many probably North Atlantic right whale (Eubalaena glacialis)) and grey whale (Eschrichtius robustus) specimens, two taxa no longer present in the eastern North Atlantic. This discovery matches expectations regarding the past utilization of North Atlantic right whales, but was unanticipated for grey whales, which have hitherto rarely been identified in the European zooarchaeological record. Many of these specimens derive from contexts associated with mediaeval cultures frequently linked to whaling: the Basques, northern Spaniards, Normans, Flemish, Frisians, Anglo-Saxons and Scandinavians. This association raises the likelihood that early whaling impacted these taxa, contributing to their extirpation and extinction. Much lower numbers of other large cetacean taxa were identified, suggesting that what are now the most depleted whales were once those most frequently used.

17.
Sci Rep ; 12(1): 13512, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35933511

ABSTRACT

Phenological diversity in food resources prolongs foraging opportunities for consumers and buffers them against environmental disturbances. Such diversity is particularly important in forage fish such as Pacific herring (Clupea pallasii), which are foundational to coastal food webs and fisheries. While the importance of phenological diversity is well-known from contemporary studies, the extent to which different populations contribute to fisheries over long time scales is mostly unknown. In this study, we investigated the relative contributions of genetically and phenologically distinct herring populations to Indigenous Peoples' food systems over multiple centuries, using ancient DNA extracted from archaeological herring bones. These bones were excavated from two Coast Salish archaeological sites (Burton Acres Shell Midden and Bay Street Shell Midden) in the Puget Sound region, USA. Using genetic stock identification from seven nuclear DNA markers, we showed that catches at the two sites in central Puget Sound were dominated by January-February and March-April spawners, which are the contemporary spawning groups in the vicinity of the sites. However, May spawners were detected in the older Burton Acres assemblage (dated to 910-685 cal BP), and a mixed stock analysis indicated that catches at this site consisted of multiple populations. These results suggest that Coast Salish ancestors used a portfolio of herring populations and benefited from the ecological resource wave created by different spawning groups of herring. This study of ancient DNA allowed us to glimpse into Indigenous traditional food and management systems, and it enabled us to investigate long-term patterns of biodiversity in an ecologically important forage fish species.


Subject(s)
DNA, Ancient , Fishes , Animals , Fisheries , Fishes/genetics , Food Chain , Seafood
18.
Nat Commun ; 13(1): 2399, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35504912

ABSTRACT

The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with humans. The dispersal history of this non-native commensal rodent across Europe, however, remains poorly understood, and different introductions may have occurred during the Roman and medieval periods. Here, in order to reconstruct the population history of European black rats, we first generate a de novo genome assembly of the black rat. We then sequence 67 ancient and three modern black rat mitogenomes, and 36 ancient and three modern nuclear genomes from archaeological sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of our newly reported sequences, together with published mitochondrial DNA sequences, confirm that black rats were introduced into the Mediterranean and Europe from Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in the black rat population. The near disappearance and re-emergence of black rats in Europe may have been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-Roman climatic cooling.


Subject(s)
Plague , Animals , Archaeology , DNA, Mitochondrial/genetics , Europe/epidemiology , Humans , Middle East , Plague/epidemiology , Rats
19.
Sci Rep ; 11(1): 7795, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833277

ABSTRACT

The origins, prevalence and nature of dairying have been long debated by archaeologists. Within the last decade, new advances in high-resolution mass spectrometry have allowed for the direct detection of milk proteins from archaeological remains, including ceramic residues, dental calculus, and preserved dairy products. Proteins recovered from archaeological remains are susceptible to post-excavation and laboratory contamination, a particular concern for ancient dairying studies as milk proteins such as beta-lactoglobulin (BLG) and caseins are potential laboratory contaminants. Here, we examine how site-specific rates of deamidation (i.e., deamidation occurring in specific positions in the protein chain) can be used to elucidate patterns of peptide degradation, and authenticate ancient milk proteins. First, we characterize site-specific deamidation patterns in modern milk products and experimental samples, confirming that deamidation occurs primarily at low half-time sites. We then compare this to previously published palaeoproteomic data from six studies reporting ancient milk peptides. We confirm that site-specific deamidation rates, on average, are more advanced in BLG  recovered from ancient dental calculus and pottery residues. Nevertheless, deamidation rates displayed a high degree of variability, making it challenging to authenticate samples with relatively few milk peptides. We demonstrate that site-specific deamidation is a useful tool for identifying modern contamination but highlight the need for multiple lines of evidence to authenticate ancient protein data.


Subject(s)
Archaeology/methods , Milk Proteins/chemistry , Milk/chemistry , Peptides/chemistry , Animals , Deamination , Humans
20.
Sci Rep ; 11(1): 21160, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34759290

ABSTRACT

To gain insight into pre-contact Coast Salish fishing practices, we used new palaeogenetic analytical techniques to assign sex identifications to salmonid bones from four archaeological sites in Burrard Inlet (Tsleil-Waut), British Columbia, Canada, dating between about 2300-1000 BP (ca. 400 BCE-CE 1200). Our results indicate that male chum salmon (Oncorhynchus keta) were preferentially targeted at two of the four sampled archaeological sites. Because a single male salmon can mate with several females, selectively harvesting male salmon can increase a fishery's maximum sustainable harvest. We suggest such selective harvesting of visually distinctive male spawning chum salmon was a common practice, most effectively undertaken at wooden weirs spanning small salmon rivers and streams. We argue that this selective harvesting of males is indicative of an ancient and probably geographically widespread practice for ensuring sustainable salmon populations. The archaeological data presented here confirms earlier ethnographic accounts describing the selective harvest of male salmon.


Subject(s)
Oncorhynchus keta , Seafood , Animals , British Columbia , Hunting , Male , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL