Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Commun ; 14(1): 1900, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37019892

ABSTRACT

Blood-brain barrier disruption marks the onset of cerebral adrenoleukodystrophy (CALD), a devastating cerebral demyelinating disease caused by loss of ABCD1 gene function. The underlying mechanism are not well understood, but evidence suggests that microvascular dysfunction is involved. We analyzed cerebral perfusion imaging in boys with CALD treated with autologous hematopoietic stem-cells transduced with the Lenti-D lentiviral vector that contains ABCD1 cDNA as part of a single group, open-label phase 2-3 safety and efficacy study (NCT01896102) and patients treated with allogeneic hematopoietic stem cell transplantation. We found widespread and sustained normalization of white matter permeability and microvascular flow. We demonstrate that ABCD1 functional bone marrow-derived cells can engraft in the cerebral vascular and perivascular space. Inverse correlation between gene dosage and lesion growth suggests that corrected cells contribute long-term to remodeling of brain microvascular function. Further studies are needed to explore the longevity of these effects.


Subject(s)
Adrenoleukodystrophy , Hematopoietic Stem Cell Transplantation , White Matter , Male , Humans , Adrenoleukodystrophy/genetics , White Matter/pathology , Hematopoietic Stem Cells/pathology , Genetic Therapy , Hematopoietic Stem Cell Transplantation/methods
2.
Neurology ; 96(4): e538-e552, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33199432

ABSTRACT

OBJECTIVE: To establish progression of imaging biomarkers of stroke, arterial steno-occlusive disease, and white matter injury in patients with smooth muscle dysfunction syndrome caused by mutations in the ACTA2 gene, we analyzed 113 cerebral MRI scans from a retrospective cohort of 27 patients with ACTA2 Arg179 pathogenic variants. METHODS: Systematic quantifications of arterial ischemic strokes and white matter lesions were performed on baseline and follow-up scans using planimetric methods. Critical stenosis and arterial vessel diameters were quantified applying manual and semiautomated methods to cerebral magnetic resonance angiograms. We then assessed correlations between arterial abnormalities and parenchymal injury. RESULTS: We found characteristic patterns of acute white matter ischemic injury and progressive internal carotid artery stenosis during infancy. Longitudinal analysis of patients older than 1.2 years showed stable white matter hyperintensities but increased number of cystic-like lesions over time. Progressive narrowing of the terminal internal carotid artery occurred in 80% of patients and correlated with the number of critical stenoses in cerebral arteries and arterial ischemic infarctions. Arterial ischemic strokes occurred in same territories affected by critical stenosis. CONCLUSIONS: We found characteristic, early, and progressive cerebrovascular abnormalities in patients with ACTA2 Arg179 pathogenic variants. Our longitudinal data suggest that while steno-occlusive disease progresses over time and is associated with arterial ischemic infarctions and cystic-like white matter lesions, white matter hyperintensities can remain stable over long periods. The evaluated metrics will enable diagnosis in early infancy and be used to monitor disease progression, guide timing of stroke preventive interventions, and assess response to current and future therapies.


Subject(s)
Actins/genetics , Arginine/genetics , Cerebrovascular Disorders/diagnostic imaging , Cerebrovascular Disorders/genetics , Disease Progression , Genetic Variation/genetics , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Longitudinal Studies , Magnetic Resonance Imaging/trends , Male , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL