Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 605(7909): 310-314, 2022 05.
Article in English | MEDLINE | ID: mdl-35344985

ABSTRACT

Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.


Subject(s)
Aging , Amyloid , Amyloidosis , Brain , Membrane Proteins , Nerve Tissue Proteins , Amyloid/metabolism , Amyloid beta-Peptides/metabolism , Amyloidosis/metabolism , Brain/metabolism , Humans , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Plaque, Amyloid/metabolism , Tauopathies/metabolism , tau Proteins/metabolism
2.
Lancet ; 403(10423): 293-304, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245249

ABSTRACT

Parkinson's disease is a progressive neurodegenerative condition associated with the deposition of aggregated α-synuclein. Insights into the pathogenesis of Parkinson's disease have been derived from genetics and molecular pathology. Biochemical studies, investigation of transplanted neurons in patients with Parkinson's disease, and cell and animal model studies suggest that abnormal aggregation of α-synuclein and spreading of pathology between the gut, brainstem, and higher brain regions probably underlie the development and progression of Parkinson's disease. At a cellular level, abnormal mitochondrial, lysosomal, and endosomal function can be identified in both monogenic and sporadic Parkinson's disease, suggesting multiple potential treatment approaches. Recent work has also highlighted maladaptive immune and inflammatory responses, possibly triggered in the gut, that accelerate the pathogenesis of Parkinson's disease. Although there are currently no disease-modifying treatments for Parkinson's disease, we now have a solid basis for the development of rational neuroprotective therapies that we hope will halt the progression of this disabling neurological condition.


Subject(s)
Parkinson Disease , Animals , Humans , Parkinson Disease/etiology , Parkinson Disease/therapy , alpha-Synuclein/metabolism , Brain/pathology , Models, Animal , Neurons
3.
Acta Neuropathol ; 145(5): 561-572, 2023 05.
Article in English | MEDLINE | ID: mdl-36847833

ABSTRACT

A 21-nucleotide duplication in one allele of SNCA was identified in a previously described disease with abundant α-synuclein inclusions that we now call juvenile-onset synucleinopathy (JOS). This mutation translates into the insertion of MAAAEKT after residue 22 of α-synuclein, resulting in a protein of 147 amino acids. Both wild-type and mutant proteins were present in sarkosyl-insoluble material that was extracted from frontal cortex of the individual with JOS and examined by electron cryo-microscopy. The structures of JOS filaments, comprising either a single protofilament, or a pair of protofilaments, revealed a new α-synuclein fold that differs from the folds of Lewy body diseases and multiple system atrophy (MSA). The JOS fold consists of a compact core, the sequence of which (residues 36-100 of wild-type α-synuclein) is unaffected by the mutation, and two disconnected density islands (A and B) of mixed sequences. There is a non-proteinaceous cofactor bound between the core and island A. The JOS fold resembles the common substructure of MSA Type I and Type II dimeric filaments, with its core segment approximating the C-terminal body of MSA protofilaments B and its islands mimicking the N-terminal arm of MSA protofilaments A. The partial similarity of JOS and MSA folds extends to the locations of their cofactor-binding sites. In vitro assembly of recombinant wild-type α-synuclein, its insertion mutant and their mixture yielded structures that were distinct from those of JOS filaments. Our findings provide insight into a possible mechanism of JOS fibrillation in which mutant α-synuclein of 147 amino acids forms a nucleus with the JOS fold, around which wild-type and mutant proteins assemble during elongation.


Subject(s)
Multiple System Atrophy , Synucleinopathies , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Synucleinopathies/genetics , Nigeria , Multiple System Atrophy/genetics , Multiple System Atrophy/metabolism , Mutation/genetics
4.
Mol Ther ; 30(4): 1465-1483, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35038583

ABSTRACT

Fibrillary aggregated α-synuclein (α-syn) deposition in Lewy bodies (LB) characterizes Parkinson's disease (PD) and is believed to trigger dopaminergic synaptic failure and a retrograde terminal-to-cell body neuronal degeneration. We described that the neuronal phosphoprotein synapsin III (Syn III) cooperates with α-syn to regulate dopamine (DA) release and can be found in the insoluble α-syn fibrils composing LB. Moreover, we showed that α-syn aggregates deposition, and the associated onset of synaptic deficits and neuronal degeneration occurring following adeno-associated viral vectors-mediated overexpression of human α-syn in the nigrostriatal system are hindered in Syn III knock out mice. This supports that Syn III facilitates α-syn aggregation. Here, in an interventional experimental design, we found that by inducing the gene silencing of Syn III in human α-syn transgenic mice at PD-like stage with advanced α-syn aggregation and overt striatal synaptic failure, we could lower α-syn aggregates and striatal fibers loss. In parallel, we observed recovery from synaptic vesicles clumping, DA release failure, and motor functions impairment. This supports that Syn III consolidates α-syn aggregates, while its downregulation enables their reduction and redeems the PD-like phenotype. Strategies targeting Syn III could thus constitute a therapeutic option for PD.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Dopamine , Dopaminergic Neurons/metabolism , Gene Silencing , Mice , Mice, Transgenic , Parkinson Disease/genetics , Parkinson Disease/therapy , Phenotype , Substantia Nigra/metabolism , Synapsins/genetics , Synapsins/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
5.
Brain ; 144(6): 1661-1669, 2021 07 28.
Article in English | MEDLINE | ID: mdl-33760024

ABSTRACT

α-Synuclein aggregation at the synapse is an early event in Parkinson's disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSPα) and α-synuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSPα is a member of the DNAJ/HSP40 family of co-chaperones and like α-synuclein, chaperones the SNARE complex assembly and controls neurotransmitter release. α-Synuclein can rescue neurodegeneration in CSPαKO mice. However, whether α-synuclein aggregation alters CSPα expression and function is unknown. Here we show that α-synuclein aggregation at the synapse is associated with a decrease in synaptic CSPα and a reduction in the complexes that CSPα forms with HSC70 and STGa. We further show that viral delivery of CSPα rescues in vitro the impaired vesicle recycling in PC12 cells with α-synuclein aggregates and in vivo reduces synaptic α-synuclein aggregates increasing monomeric α-synuclein and restoring normal dopamine release in 1-120hαSyn mice. These novel findings reveal a mechanism by which α-synuclein aggregation alters CSPα at the synapse, and show that CSPα rescues α-synuclein aggregation-related phenotype in 1-120hαSyn mice similar to the effect of α-synuclein in CSPαKO mice. These results implicate CSPα as a potential therapeutic target for the treatment of early-stage Parkinson's disease.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , HSP40 Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Animals , Corpus Striatum/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregation, Pathological/pathology , Synapses/metabolism , Synapses/pathology
6.
Adv Exp Med Biol ; 1281: 177-199, 2021.
Article in English | MEDLINE | ID: mdl-33433876

ABSTRACT

Filamentous inclusions of tau protein are found in cases of inherited and sporadic frontotemporal dementias (FTDs). Mutations in MAPT, the tau gene, cause approximately 5% of cases of FTD. They proved that dysfunction of tau protein is sufficient to cause neurodegeneration and dementia. Clinically and pathologically, cases with MAPT mutations can resemble sporadic diseases, such as Pick's disease, globular glial tauopathy, progressive supranuclear palsy and corticobasal degeneration. The structures of tau filaments from Pick's disease and corticobasal degeneration, determined by electron cryo-microscopy, revealed the presence of specific tau folds in each disease, with no inter-individual variation. The same was true of chronic traumatic encephalopathy.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Pick Disease of the Brain , Tauopathies , Frontotemporal Dementia/genetics , Humans , Tauopathies/genetics , tau Proteins/genetics
7.
Neurobiol Dis ; 138: 104789, 2020 05.
Article in English | MEDLINE | ID: mdl-32032728

ABSTRACT

Loss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1-120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1-120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management.


Subject(s)
Methylphenidate/metabolism , Synapsins/metabolism , alpha-Synuclein/metabolism , Animals , Cocaine/pharmacology , Corpus Striatum/metabolism , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Gait Disorders, Neurologic/metabolism , Lewy Bodies/metabolism , Methylphenidate/pharmacology , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Substantia Nigra/metabolism , Synucleinopathies
8.
Neurobiol Dis ; 132: 104582, 2019 12.
Article in English | MEDLINE | ID: mdl-31445162

ABSTRACT

There are no approved drug therapies that can prevent or slow the progression of Parkinson's disease (PD). Accumulation and aggregation of α-synuclein protein is observed throughout the nervous system in PD. α-Synuclein is a core component of Lewy bodies and neurites that neuropathologically define PD, suggesting that α-synuclein may be a key causative agent in PD. Recent experimental data suggest that PD progression may arise due to spreading of pathological forms of extracellular α-synuclein throughout the brain via a cellular release, uptake and seeding mechanism. We have developed a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. MEDI1341 binds both monomeric and aggregated forms of α-synuclein. In vitro, MEDI1341 blocks cell-to-cell transmission of pathologically relevant α-synuclein preformed fibrils (pffs). After intravenous injection into rats and cynomolgus monkeys, MEDI1341 rapidly enters the central nervous system and lowers free extracellular α-synuclein levels in the interstitial fluid (ISF) and cerebrospinal fluid (CSF) compartments. Using a novel lentiviral-based in vivo mouse model of α-synuclein spreading in the brain, we show that treatment with MEDI1341 significantly reduces α-synuclein accumulation and propagation along axons. In this same model, we demonstrate that an effector-null version of the antibody was equally as effective as one with effector function. MEDI1341 is now in Phase 1 human clinical trial testing as a novel treatment for α-synucleinopathies including PD with the aim to slow or halt disease progression.


Subject(s)
Antibodies, Monoclonal/pharmacology , Brain/drug effects , alpha-Synuclein/antagonists & inhibitors , Animals , Antibody Specificity , Humans , Macaca fascicularis , Mice , Rats
9.
Acta Neuropathol ; 138(4): 575-595, 2019 10.
Article in English | MEDLINE | ID: mdl-31165254

ABSTRACT

Parkinson's disease (PD) is characterized by the presence of α-synuclein aggregates known as Lewy bodies and Lewy neurites, whose formation is linked to disease development. The causal relation between α-synuclein aggregates and PD is not well understood. We generated a new transgenic mouse line (MI2) expressing human, aggregation-prone truncated 1-120 α-synuclein under the control of the tyrosine hydroxylase promoter. MI2 mice exhibit progressive aggregation of α-synuclein in dopaminergic neurons of the substantia nigra pars compacta and their striatal terminals. This is associated with a progressive reduction of striatal dopamine release, reduced striatal innervation and significant nigral dopaminergic nerve cell death starting from 6 and 12 months of age, respectively. In the MI2 mice, alterations in gait impairment can be detected by the DigiGait test from 9 months of age, while gross motor deficit was detected by rotarod test at 20 months of age when 50% of dopaminergic neurons in the substantia nigra pars compacta are lost. These changes were associated with an increase in the number and density of 20-500 nm α-synuclein species as shown by dSTORM. Treatment with the oligomer modulator anle138b, from 9 to 12 months of age, restored striatal dopamine release, prevented dopaminergic cell death and gait impairment. These effects were associated with a reduction of the inner density of large α-synuclein aggregates and an increase in dispersed small α-synuclein species as revealed by dSTORM. The MI2 mouse model recapitulates the progressive dopaminergic deficit observed in PD, showing that early synaptic dysfunction is associated to fine behavioral motor alterations, precedes dopaminergic axonal loss and neuronal death that become associated with a more consistent motor deficit upon reaching a certain threshold. Our data also provide new mechanistic insight for the effect of anle138b's function in vivo supporting that targeting α-synuclein aggregation is a promising therapeutic approach for PD.


Subject(s)
Cell Death/physiology , Dopaminergic Neurons/pathology , Parkinson Disease/pathology , Protein Aggregation, Pathological/pathology , Substantia Nigra/pathology , alpha-Synuclein/metabolism , Animals , Disease Models, Animal , Gait/genetics , Mice , Mice, Transgenic , Motor Activity/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/genetics
10.
Brain ; 141(2): 521-534, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29253099

ABSTRACT

See Josephs (doi:10.1093/brain/awx367) for a scientific commentary on this article.In many neurodegenerative disorders, familial forms have provided important insights into the pathogenesis of their corresponding sporadic forms. The first mutations associated with frontotemporal lobar degeneration (FTLD) were found in the microtubule-associated protein tau (MAPT) gene on chromosome 17 in families with frontotemporal degeneration and parkinsonism (FTDP-17). However, it was soon discovered that 50% of these families had a nearby mutation in progranulin. Regardless, the original FTDP-17 nomenclature has been retained for patients with MAPT mutations, with such patients currently classified independently from the different sporadic forms of FTLD with tau-immunoreactive inclusions (FTLD-tau). The separate classification of familial FTLD with MAPT mutations implies that familial forms cannot inform on the pathogenesis of the different sporadic forms of FTLD-tau. To test this assumption, this study pathologically assessed all FTLD-tau cases with a known MAPT mutation held by the Sydney and Cambridge Brain Banks, and compared them to four cases of four subtypes of sporadic FTLD-tau, in addition to published case reports. Ten FTLD-tau cases with a MAPT mutation (K257T, S305S, P301L, IVS10+16, R406W) were screened for the core differentiating neuropathological features used to diagnose the different sporadic FTLD-tau subtypes to determine whether the categorical separation of MAPT mutations from sporadic FTLD-tau is valid. Compared with sporadic cases, FTLD-tau cases with MAPT mutations had similar mean disease duration but were younger at age of symptom onset (55 ± 4 years versus 70 ± 6 years). Interestingly, FTLD-tau cases with MAPT mutations had similar patterns and severity of neuropathological features to sporadic FTLD-tau subtypes and could be classified into: Pick's disease (K257T), corticobasal degeneration (S305S, IVS10‰+‰16, R406W), progressive supranuclear palsy (S305S) or globular glial tauopathy (P301L, IVS10‰+‰16). The finding that the S305S mutation could be classified into two tauopathies suggests additional modifying factors. Assessment of our cases and previous reports suggests that distinct MAPT mutations result in particular FTLD-tau subtypes, supporting the concept that they are likely to inform on the varied cellular mechanisms involved in distinctive forms of sporadic FTLD-tau. As such, FTLD-tau cases with MAPT mutations should be considered familial forms of FTLD-tau subtypes rather than a separate FTDP-17 category, and continued research on the effects of different mutations more focused on modelling their impact to produce the very different sporadic FTLD-tau pathologies in animal and cellular models.


Subject(s)
Frontotemporal Dementia/complications , Frontotemporal Dementia/genetics , Mutation/genetics , Tauopathies/complications , tau Proteins/genetics , Aged , Cohort Studies , Correlation of Data , Female , Frontotemporal Dementia/pathology , Humans , Male , Middle Aged , Tauopathies/genetics
11.
Adv Exp Med Biol ; 1184: 3-21, 2019.
Article in English | MEDLINE | ID: mdl-32096024

ABSTRACT

Tau filaments with distinct morphologies and/or isoform compositions underlie a large number of human neurodegenerative diseases. Their formation is important, because dominantly inherited mutations in MAPT, the tau gene, cause frontotemporal dementia with abundant filamentous tau inclusions. Assembly of tau may begin in a specific region of the brain, from where it spreads to other areas. It remains to be seen if the molecular species underlying tau aggregate-mediated neurodegeneration and propagation are the same or different. In the brains of mice transgenic for human mutant P301S tau, small tau filaments are the predominant seed-competent species. It has been suggested that different conformers of assembled tau may give rise to different human tauopathies, but until recently, it was not possible to study this directly. Electron cryo-microscopy can now be used to determine high-resolution structures of amyloid filaments from human brain. Paired helical and straight tau filaments of Alzheimer's disease are ultrastructural polymorphs. Each filament core is composed of two identical protofilaments extending from G273/304-E380 (in the numbering of the 441 amino acid isoform of human tau), which adopt a combined cross-ß/ß-helix structure. They comprise the ends of the first or second microtubule-binding repeat (R1 or R2), the whole of R3 and R4, as well as 12 amino acids after R4. By contrast, the core of the narrow filament of Pick's disease consists of a single protofilament extending from K254-F378 of 3R tau, which adopts a cross-ß structure. It comprises the last 21 amino acids of R1, all of R3 and R4, as well as 10 amino acids after R4. Wide tau filaments of Pick's disease, which are in the minority, consist of two narrow filaments packed against each other. The tau filament folds of Alzheimer's and Pick's diseases appear to be conserved between different cases of disease. These findings show that filamentous tau adopts one fold in Alzheimer's disease and a different fold in Pick's disease, establishing the existence of distinct conformers.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Pick Disease of the Brain/metabolism , Tauopathies/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Animals , Humans
12.
Int J Mol Sci ; 20(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609739

ABSTRACT

Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein⁻protein and protein⁻lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it.


Subject(s)
Multiple System Atrophy/metabolism , Parkinson Disease/metabolism , Synapses/metabolism , alpha-Synuclein/metabolism , Animals , Humans , Neurotransmitter Agents/metabolism , Protein Binding , alpha-Synuclein/chemistry
13.
Chembiochem ; 19(19): 2033-2038, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30051958

ABSTRACT

The aberrant misfolding and subsequent conversion of monomeric protein into amyloid aggregates characterises many neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. These aggregates are highly heterogeneous in structure, generally of low abundance and typically smaller than the diffraction limit of light (≈250 nm). To overcome the challenges these characteristics pose to the study of endogenous aggregates formed in cells, we have developed a method to characterise them at the nanometre scale without the need for a conjugated fluorophore. Using a combination of DNA PAINT and an amyloid-specific aptamer, we demonstrate that this technique is able to detect and super-resolve a range of aggregated species, including those formed by α-synuclein and amyloid-ß. Additionally, this method enables endogenous protein aggregates within cells to be characterised. We found that neuronal cells derived from patients with Parkinson's disease contain a larger number of protein aggregates than those from healthy controls.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Neurons/pathology , Parkinson Disease/pathology , Protein Aggregates , alpha-Synuclein/chemistry , Amyloid beta-Peptides/metabolism , Aptamers, Peptide/chemistry , Humans , Protein Aggregation, Pathological , alpha-Synuclein/metabolism
14.
Cell Tissue Res ; 373(1): 137-148, 2018 07.
Article in English | MEDLINE | ID: mdl-29119326

ABSTRACT

In 2017, it was 200 years since James Parkinson published 'An Essay on the Shaking Palsy' and 20 years since α-synuclein aggregation came to the fore. In 1998, multiple system atrophy joined Parkinson's disease and dementia with Lewy bodies as the third major synucleinopathy. Here, we describe the work that led to the identification of α-synuclein in Lewy bodies, Lewy neurites and Papp-Lantos bodies. We also review some of the findings reported since 1997.


Subject(s)
Nerve Degeneration/pathology , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Humans , Lewy Bodies , Protein Aggregates , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
15.
J Neurosci ; 36(7): 2086-100, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26888921

ABSTRACT

Tauopathies are neurodegenerative diseases characterized by intraneuronal inclusions of hyperphosphorylated tau protein and abnormal expression of brain-derived neurotrophic factor (BDNF), a key modulator of neuronal survival and function. The severity of both these pathological hallmarks correlate with the degree of cognitive impairment in patients. However, how tau pathology specifically modifies BDNF signaling and affects neuronal function during early prodromal stages of tauopathy remains unclear. Here, we report that the mild tauopathy developing in retinal ganglion cells (RGCs) of the P301S tau transgenic (P301S) mouse induces functional retinal changes by disrupting BDNF signaling via the TrkB receptor. In adult P301S mice, the physiological visual response of RGCs to pattern light stimuli and retinal acuity decline significantly. As a consequence, the activity-dependent secretion of BDNF in the vitreous is impaired in P301S mice. Further, in P301S retinas, TrkB receptors are selectively upregulated, but uncoupled from downstream extracellular signal-regulated kinase (ERK) 1/2 signaling. We also show that the impairment of TrkB signaling is triggered by tau pathology and mediates the tau-induced dysfunction of visual response. Overall our results identify a neurotrophin-mediated mechanism by which tau induces neuronal dysfunction during prodromal stages of tauopathy and define tau-driven pathophysiological changes of potential value to support early diagnosis and informed therapeutic decisions. SIGNIFICANCE STATEMENT: This work highlights the potential molecular mechanisms by which initial tauopathy induces neuronal dysfunction. Combining clinically used electrophysiological techniques (i.e., electroretinography) and molecular analyses, this work shows that in a relevant model of early tauopathy, the retina of the P301S mutant human tau transgenic mouse, mild tau pathology results in functional changes of neuronal activity, likely due to selective impairment of brain-derived neurotrophic factor signaling via its receptor, TrkB. These findings may have important translational implications for early diagnosis in a subset of Alzheimer's disease patients with early visual symptoms and emphasize the need to clarify the pathophysiological changes associated with distinct tauopathy stages to support informed therapeutic decisions and guide drug discovery.


Subject(s)
Tauopathies/physiopathology , tau Proteins , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Electroretinography , MAP Kinase Signaling System/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Growth Factors/genetics , Photic Stimulation , Receptor, trkB/genetics , Retinal Ganglion Cells , Tissue Extracts/pharmacology , Vision, Ocular , Visual Acuity
16.
J Cell Sci ; 128(13): 2231-43, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25967550

ABSTRACT

The main neuropathological features of Parkinson's disease are dopaminergic nigrostriatal neuron degeneration, and intraneuronal and intraneuritic proteinaceous inclusions named Lewy bodies and Lewy neurites, respectively, which mainly contain α-synuclein (α-syn, also known as SNCA). The neuronal phosphoprotein synapsin III (also known as SYN3), is a pivotal regulator of dopamine neuron synaptic function. Here, we show that α-syn interacts with and modulates synapsin III. The absence of α-syn causes a selective increase and redistribution of synapsin III, and changes the organization of synaptic vesicle pools in dopamine neurons. In α-syn-null mice, the alterations of synapsin III induce an increased locomotor response to the stimulation of synapsin-dependent dopamine overflow, despite this, these mice show decreased basal and depolarization-dependent striatal dopamine release. Of note, synapsin III seems to be involved in α-syn aggregation, which also coaxes its increase and redistribution. Furthermore, synapsin III accumulates in the caudate and putamen of individuals with Parkinson's disease. These findings support a reciprocal modulatory interaction of α-syn and synapsin III in the regulation of dopamine neuron synaptic function.


Subject(s)
Dopaminergic Neurons/metabolism , Synapses/metabolism , Synapsins/metabolism , alpha-Synuclein/metabolism , Animals , Cocaine/administration & dosage , Corpus Striatum , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/ultrastructure , Gene Silencing , Humans , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Motor Activity , Mutant Proteins/metabolism , Parkinson Disease , Presynaptic Terminals , Protein Aggregates , Protein Binding , Putamen , Subcellular Fractions/metabolism , Synapses/ultrastructure , Synaptic Vesicles/metabolism , alpha-Synuclein/deficiency
17.
Glia ; 64(3): 457-71, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26576485

ABSTRACT

Oligodendrocyte progenitor cell (OPC) differentiation is an important therapeutic target to promote remyelination in multiple sclerosis (MS). We previously reported hyperphosphorylated and aggregated microtubule-associated protein tau in MS lesions, suggesting its involvement in axonal degeneration. However, the influence of pathological tau-induced axonal damage on the potential for remyelination is unknown. Therefore, we investigated OPC differentiation in human P301S tau (P301S-htau) transgenic mice, both in vitro and in vivo following focal demyelination. In 2-month-old P301S-htau mice, which show hyperphosphorylated tau in neurons, we found atrophic axons in the spinal cord in the absence of prominent axonal degeneration. These signs of early axonal damage were associated with microgliosis and an upregulation of IL-1ß and TNFα. Following in vivo focal white matter demyelination we found that OPCs differentiated more efficiently in P301S-htau mice than wild type (Wt) mice. We also found an increased level of myelin basic protein within the lesions, which however did not translate into increased remyelination due to higher susceptibility of P301S-htau axons to demyelination-induced degeneration compared to Wt axons. In vitro experiments confirmed higher differentiation capacity of OPCs from P301S-htau mice compared with Wt mice-derived OPCs. Because the OPCs from P301S-htau mice do not ectopically express the transgene, and when isolated from newborn mice behave like Wt mice-derived OPCs, we infer that their enhanced differentiation capacity must have been acquired through microenvironmental priming. Our data suggest the intriguing concept that damaged axons may signal to OPCs and promote their differentiation in the attempt at rescue by remyelination.


Subject(s)
Cell Differentiation/physiology , Demyelinating Diseases/pathology , Neurons/metabolism , Oligodendroglia/physiology , Stem Cells/physiology , tau Proteins/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , CD11b Antigen/metabolism , Cell Death/genetics , Cell Differentiation/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Demyelinating Diseases/etiology , Disease Models, Animal , Gene Expression Regulation/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Myelin Basic Protein/metabolism , Nerve Tissue Proteins/metabolism , Oligodendrocyte Transcription Factor 2 , Spinal Cord Injuries/complications , tau Proteins/genetics
18.
Eur J Neurosci ; 44(6): 2396-403, 2016 09.
Article in English | MEDLINE | ID: mdl-27422327

ABSTRACT

Multiple neurodegenerative disorders with tau pathology are characterised by the loss of memory and cognitive decline that can be associated with other symptoms including olfactory alterations that are often regarded as an early symptom of the diseases. Here, we have investigated whether olfactory dysfunction is present in the P301S human tau transgenic mice and if it is associated to tau pathology. Progressive tauopathy and neurodegeneration were noticeable in the olfactory bulb and piriform cortex at early age in the P301S human tau transgenic mice and olfactory sensitivity for social or non-social odours was significantly impaired at 3 months of age, when the piriform cortex-dependent odour-cross habituation was also disrupted. The olfactory alterations in the P301S tau transgenic mouse line provide an in vivo system where to test the mechanism-based therapies for the common and yet untreatable tauopathies.


Subject(s)
Hippocampus/physiopathology , Memory/physiology , Olfactory Bulb/physiopathology , Piriform Cortex/physiopathology , Tauopathies/physiopathology , Animals , Disease Models, Animal , Hippocampus/metabolism , Mice, Transgenic , Tauopathies/genetics , tau Proteins/genetics , tau Proteins/metabolism
20.
Brain ; 138(Pt 11): 3345-59, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26220942

ABSTRACT

Tauopathies, such as Alzheimer's disease, some cases of frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy, are characterized by aggregates of the microtubule-associated protein tau, which are linked to neuronal death and disease development and can be caused by mutations in the MAPT gene. Six tau isoforms are present in the adult human brain and they differ by the presence of 3(3R) or 4(4R) C-terminal repeats. Only the shortest 3R isoform is present in foetal brain. MAPT mutations found in human disease affect tau binding to microtubules or the 3R:4R isoform ratio by altering exon 10 splicing. We have differentiated neurons from induced pluripotent stem cells derived from fibroblasts of controls and patients with N279K and P301L MAPT mutations. Induced pluripotent stem cell-derived neurons recapitulate developmental tau expression, showing the adult brain tau isoforms after several months in culture. Both N279K and P301L neurons exhibit earlier electrophysiological maturation and altered mitochondrial transport compared to controls. Specifically, the N279K neurons show abnormally premature developmental 4R tau expression, including changes in the 3R:4R isoform ratio and AT100-hyperphosphorylated tau aggregates, while P301L neurons are characterized by contorted processes with varicosity-like structures, some containing both alpha-synuclein and 4R tau. The previously unreported faster maturation of MAPT mutant human neurons, the developmental expression of 4R tau and the morphological alterations may contribute to disease development.


Subject(s)
Gene Expression Regulation, Developmental , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , RNA, Messenger/metabolism , tau Proteins/genetics , Adult , Aged , Case-Control Studies , Cell Line , Cells, Cultured , Female , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/pathology , Infant, Newborn , Male , Microscopy, Confocal , Microtubules/metabolism , Middle Aged , Neurons/cytology , Neurons/pathology , Patch-Clamp Techniques , Protein Isoforms/genetics , Protein Isoforms/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tauopathies , alpha-Synuclein/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL