Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
World J Microbiol Biotechnol ; 40(6): 190, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702495

ABSTRACT

The microbiota represents a crucial area of research in maintaining human health due to its potential for uncovering novel biomarkers, therapies, and molecular mechanisms relevant to population identification and experimental model characterization. Among these microorganisms, Enterococcus faecalis, a Gram-positive bacterium found in the gastrointestinal tract of humans and animals, holds particular significance. Strains of this bacterial species have sparked considerable debate in the literature due to their dual nature; they can either be utilized as probiotics in the food industry or demonstrate resistance to antibiotics, potentially leading to severe illness, disability, and death. Given the diverse characteristics of Enterococcus faecalis strains, this review aims to provide a comprehensive understanding of their impact on various systems within the host, including the immunological, cardiovascular, metabolic, and nervous systems. Furthermore, we summarize the bacterium-host interaction characteristics and molecular effects to highlight their targets, features, and overall impact on microbial communities and host health.


Subject(s)
Enterococcus faecalis , Probiotics , Humans , Animals , Gastrointestinal Microbiome , Gram-Positive Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Host-Pathogen Interactions , Gastrointestinal Tract/microbiology , Host Microbial Interactions
2.
J Immunol ; 200(3): 949-956, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29288201

ABSTRACT

CD22 and sialic acid-binding Ig-like lectin (Siglec)-G are members of the Siglec family of inhibitory coreceptors expressed on B cells that participate in enforcement of peripheral B cell tolerance. We have shown previously that when a BCR engages its cognate Ag on a cell surface that also expresses Siglec ligands, B cell Siglecs are recruited to the immunological synapse, resulting in suppression of BCR signaling and B cell apoptosis. Because all cells display sialic acids, and CD22 and Siglec-G have distinct, yet overlapping, specificities for sialic acid-containing glycan ligands, any cell could, in principle, invoke this tolerogenic mechanism for cell surface Ags. However, we show in this article that C57BL/6J mouse RBCs are essentially devoid of CD22 and Siglec-G ligands. As a consequence, RBCs that display a cell surface Ag, membrane-bound hen egg lysozyme, strongly activate Ag-specific B cells. We reasoned that de novo introduction of CD22 ligands in RBCs should abolish B cell activation toward its cognate Ag on the surface of RBCs. Accordingly, we used a glyco-engineering approach wherein synthetic CD22 ligands linked to lipids are inserted into the membrane of RBCs. Indeed, insertion of CD22 ligands into the RBC cell surface strongly inhibited B cell activation, cytokine secretion, and proliferation. These results demonstrate that the lack of Siglec ligands on the surface of murine RBCs permits B cell responses to erythrocyte Ags and show that Siglec-mediated B cell tolerance is restricted to cell types that express glycan ligands for the B cell Siglecs.


Subject(s)
Antigens, Surface/immunology , B-Lymphocytes/immunology , Erythrocytes/immunology , Immune Tolerance/immunology , Lymphocyte Activation/immunology , Sialic Acid Binding Ig-like Lectin 2/immunology , Sialic Acid Binding Immunoglobulin-like Lectins/immunology , Animals , Apoptosis/immunology , B-Lymphocytes/metabolism , CHO Cells , Cell Line , Cricetulus , Mice , Mice, Inbred C57BL , Mice, Knockout , Muramidase/genetics , Muramidase/immunology , Muramidase/metabolism , Receptors, Antigen, B-Cell/immunology , Sialic Acid Binding Ig-like Lectin 2/genetics , Sialic Acids/immunology
3.
Int J Mol Sci ; 21(16)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824269

ABSTRACT

p-Cymene (p-C) and rosmarinic acid (RA) are secondary metabolites that are present in medicinal herbs and Mediterranean spices that have promising anti-inflammatory properties. This study aimed to evaluate their intestinal anti-inflammatory activity in the trinitrobenzene sulphonic acid (TNBS)-induced colitis model in rats. p-C and RA (25-200 mg/kg) oral administration reduced the macroscopic lesion score, ulcerative area, intestinal weight/length ratio, and diarrheal index in TNBS-treated animals. Both compounds (200 mg/kg) decreased malondialdehyde (MDA) and myeloperoxidase (MPO), restored glutathione (GSH) levels, and enhanced fluorescence intensity of superoxide dismutase (SOD). They also decreased interleukin (IL)-1ß and tumor necrosis factor (TNF)-α, and maintained IL-10 basal levels. Furthermore, they modulated T cell populations (cluster of differentiation (CD)4+, CD8+, or CD3+CD4+CD25+) analyzed from the spleen, mesenteric lymph nodes, and colon samples, and also decreased cyclooxigenase 2 (COX-2), interferon (IFN)-γ, inducible nitric oxide synthase (iNOS), and nuclear transcription factor kappa B subunit p65 (NFκB-p65) mRNA transcription, but only p-C interfered in the suppressor of cytokine signaling 3 (SOCS3) expression in inflamed colons. An increase in gene expression and positive cells immunostained for mucin type 2 (MUC-2) and zonula occludens 1 (ZO-1) was observed. Altogether, these results indicate intestinal anti-inflammatory activity of p-C and RA involving the cytoprotection of the intestinal barrier, maintaining the mucus layer, and preserving communicating junctions, as well as through modulation of the antioxidant and immunomodulatory systems.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cinnamates/therapeutic use , Colitis, Ulcerative/drug therapy , Cymenes/therapeutic use , Depsides/therapeutic use , Mucin-2/metabolism , Zonula Occludens-1 Protein/metabolism , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Cinnamates/pharmacology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cymenes/pharmacology , Depsides/pharmacology , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukins/genetics , Interleukins/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Mucin-2/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Wistar , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Zonula Occludens-1 Protein/genetics , Rosmarinic Acid
4.
Nitric Oxide ; 89: 32-40, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31051258

ABSTRACT

Nitric oxide (NO) is produced by enzymatic activity of neuronal (nNOS), endothelial (eNOS), and inducible nitric oxide synthase (iNOS) and modulates a broad spectrum of physiological and pathophysiological conditions. The iNOS isoform is positively regulated at transcriptional level and produces high levels of NO in response to inflammatory mediators and/or to pattern recognition receptor signaling, such as Toll-like receptors. In this review, we compiled the main contributions of our group for understanding of the role of NO in sepsis and arthritis outcome and the peripheral contributions of NO to inflammatory pain development. Although neutrophil iNOS-derived NO is necessary for bacterial killing, systemic production of high levels of NO impairs neutrophil migration to infections through inhibiting neutrophil adhesion on microcirculation and their locomotion. Moreover, neutrophil-derived NO contributes to multiple organ dysfunction in sepsis. In arthritis, NO is chief for bacterial clearance in staphylococcal-induced arthritis; however, it contributes to articular damage and bone mass degradation. NO produced in inflammatory sites also downmodulates pain. The mechanism involved in analgesic effect and inhibition of neutrophil migration is dependent on the activation of the classical sGC/cGMP/PKG pathway. Despite the increasing number of studies performed after the identification of NO as an endothelium-derived relaxing factor, the underlying mechanisms of NO in inflammatory diseases remain unclear.


Subject(s)
Arthritis, Rheumatoid/physiopathology , Nitric Oxide/metabolism , Pain/physiopathology , Sepsis/physiopathology , Animals , Humans , Inflammation/physiopathology , Neutrophils/physiology , Nitric Oxide Synthase Type II/metabolism
5.
Int J Exp Pathol ; 98(6): 329-340, 2017 12.
Article in English | MEDLINE | ID: mdl-29226508

ABSTRACT

Sepsis is associated with high mortality. Both critically ill humans and animal models of sepsis exhibit changes in their glucose homeostasis, that is, hypoglycaemia, with the progression of infection. However, the relationship between basal glycaemia, glucose tolerance and insulin sensitivity is not well understood. Thus, we aimed to evaluate this glucose homeostasis triad at the late stage of sepsis (24 h after surgery) in male Swiss mice subjected to lethal and sublethal sepsis by the caecal ligation and puncture (CLP) model. The percentage of survival 24 h after CLP procedure in the Lethal and Sublethal groups was around 66% and 100% respectively. Both Lethal and Sublethal groups became hypoglycaemic in fasting and fed states 24 h after surgery. The pronounced fed hypoglycaemia in the Lethal group was not due to worsening anorexic behaviour or hepatic inability to deliver glucose in relation to the Sublethal group. Reduction in insulin sensitivity in CLP mice occurred in a lethality-dependent manner and was not associated with glucose intolerance. Analysis of oral and intraperitoneal glucose tolerance tests, as well as the gastrointestinal motility data, indicated that CLP mice had reduced intestinal glucose absorption. Altogether, we suggest cessation of appetite and intestinal glucose malabsorption are key contributors to the hypoglycaemic state observed during experimental severe sepsis.


Subject(s)
Blood Glucose/biosynthesis , Cecum/metabolism , Homeostasis/physiology , Sepsis/mortality , Animals , Cecum/surgery , Disease Models, Animal , Hypoglycemic Agents , Insulin Resistance , Ligation/methods , Liver/metabolism , Male , Mice , Punctures/methods
6.
J Immunol ; 191(3): 1373-82, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23817413

ABSTRACT

Type 1 diabetes enhances susceptibility to infection and favors the sepsis development. In addition, diabetic mice produced higher levels of histamine in several tissues and in the blood after LPS stimulation than nondiabetic mice. In this study, we aimed to explore the role of mast cells (MCs) and histamine in neutrophil migration and, consequently, infection control in diabetic mice with mild sepsis (MS) induced by cecum ligation and puncture. We used female BALB/c, MC-sufficient (WB/B6), MC-deficient (W/W(v)), and NOD mice. Diabetic mice given MS displayed 100% mortality within 24 h, whereas all nondiabetic mice survived for at least 5 d. The mortality rate of diabetic mice was reduced to 57% after the depletion of MC granules with compound 48/80. Moreover, this pretreatment increased neutrophil migration to the focus of infection, which reduced systemic inflammatory response and bacteremia. The downregulation of CXCR2 and upregulation of G protein-coupled receptor kinase 2 in neutrophils was prevented by pretreatment of diabetic mice given MS with compound 48/80. In addition, blocking the histamine H2 receptor restored neutrophil migration, enhanced CXCR2 expression, decreased bacteremia, and improved sepsis survival in alloxan-induced diabetic and spontaneous NOD mice. Finally, diabetic W/W(v) mice had neutrophil migration to the peritoneal cavity, increased CXCR2 expression, and reduced bacteremia compared with diabetic WB/B6 mice. These results demonstrate that histamine released by MCs reduces diabetic host resistance to septic peritonitis in mice.


Subject(s)
Diabetes Mellitus, Experimental/mortality , G-Protein-Coupled Receptor Kinase 2/metabolism , Mast Cells/immunology , Neutrophils/metabolism , Receptors, Interleukin-8B/metabolism , Alloxan , Animals , Bacteremia/drug therapy , Cell Movement , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/microbiology , Down-Regulation/drug effects , Female , Histamine/metabolism , Histamine H2 Antagonists , Inflammation/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Receptors, Histamine H2/metabolism , Sepsis/complications , Sepsis/microbiology , Sepsis/mortality , Up-Regulation/drug effects , p-Methoxy-N-methylphenethylamine/pharmacology
7.
Int J Biol Macromol ; 224: 1450-1459, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36441080

ABSTRACT

Ultrasensitive electroanalytical monitoring of interleukin-6 levels in serum samples has emerged as a valuable tool for the early diagnosis of inflammatory diseases. Despite its advantages, there is a lack of strategies for the label-free voltammetric determination of cytokines. Here, a novel chitosan/genipin modified fluorine tin oxide electrode was developed providing an in-situ hydrogel formation (FTO/CSG). This platform was applied for the detection of interleukin-6, a major pro-inflammatory cytokine. Transmission electron microscopy (TEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) indicated genipin serves as an efficient green cross-linker to build the immunosensing platform (FTO/CSG/anti-IL-6). EIS showed an increase in charge transfer resistance from 326 to 1360 kΩ after the immobilization of anti-IL-6 antibodies. By square wave voltammetry, this method achieved a detection limit of 0.03 pg mL-1 with a wide linear range of 0.05-1000 pg mL-1. Additionally, it displayed a high selectivity index when tested in the presence of three inflammatory cytokines as interfering proteins: IL-12, IL-1ß, and TNF-α. The sample matrix effect showed a peak current variation lower than 5 %. The novel method was applied for the quantification of IL-6 in serum samples of septic mice. No statistical differences were observed between the standard ELISA and the proposed method using a confidence level of 95 %.


Subject(s)
Biosensing Techniques , Chitosan , Sepsis , Animals , Mice , Interleukin-6 , Electrochemical Techniques/methods , Biosensing Techniques/methods , Biomarkers , Electrodes , Immunoassay/methods , Limit of Detection
8.
Eur J Pharmacol ; 959: 176092, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37797676

ABSTRACT

Sepsis is a severe condition secondary to dysregulated host response to infection leading to tissue damage and organ dysfunction. Cannabinoid CB2 receptor has modulatory effects on the immune response. Therefore, this study investigated the effects of a cannabinoid CB2 receptor agonist on the local and systemic inflammatory process associated with pneumonia-induced sepsis. Pneumonia-induced sepsis was induced in mice by intratracheal inoculation of Klebsiella pneumoniae. Tissue and bronchoalveolar lavage (BAL) were collected 6, 24, or 48 h after surgery. Mice were treated with CB2 agonist (AM1241, 0.3 and 3 mg/kg, i.p.) and several parameters of inflammation were evaluated 24 h after sepsis induction. Polymorphonuclear cell migration to the infectious focus peaked 24 h after pneumonia-induced sepsis induction in male and female animals. Septic male mice presented a significant reduction of cannabinoid CB2 receptor density in the lung tissue after 24 h, which was not observed in females. CB2 expression in BAL macrophages was also reduced in septic animals. Treatment of septic mice with AM1241 reduced cell migration, local infection, myeloperoxidase activity, protein extravasation, and NOS-2 expression in the lungs. In addition, the treatment reduced plasma IL-1ß, increased IL-10 and reduced the severity and mortality of septic animals. These results suggest that AM1241 promotes an interesting balance in the inflammatory response, maintaining lung function and preventing organ injury. Therefore, cannabinoid CB2 receptors are potential targets to control the excessive inflammatory process that occurs in severe conditions, and agonists of these receptors can be considered promising adjuvants in pneumonia-induced sepsis treatment.


Subject(s)
Cannabinoids , Pneumonia , Sepsis , Female , Mice , Male , Animals , Cannabinoid Receptor Agonists/pharmacology , Pneumonia/drug therapy , Cannabinoids/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Receptors, Cannabinoid , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Receptor, Cannabinoid, CB2 , Receptor, Cannabinoid, CB1
9.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Article in English | MEDLINE | ID: mdl-36526272

ABSTRACT

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Subject(s)
COVID-19 , Sepsis , Humans , Mice , Animals , Oseltamivir/adverse effects , Zanamivir/adverse effects , Neuraminidase/metabolism , Neuraminidase/pharmacology , Neutrophils , Matrix Metalloproteinase 9/metabolism , Reactive Oxygen Species , Lipopolysaccharides/pharmacology , Sepsis/chemically induced
10.
Am J Respir Crit Care Med ; 183(7): 922-31, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-20971829

ABSTRACT

RATIONALE: The reduction of neutrophil migration to the bacterial focus is associated with poor outcome in sepsis. OBJECTIVES: The objective of this study was to identify soluble substances in the blood of septic mice that inhibit neutrophil migration. METHODS: A pool of serum obtained from mice 2 hours after the induction of severe sepsis by cecal ligation and puncture inhibited the neutrophil migration. The proteins with inhibitory activity on neutrophil migration were isolated by Blue-Sepharose chromatography, high-performance liquid chromatography, and electrophoresis, and identified by mass spectrometry. MEASUREMENTS AND MAIN RESULTS: Hemopexin was identified as the serum component responsible for the inhibition of neutrophil migration. In sepsis, the pretreatment of wild-type mice with hemopexin inhibited neutrophil migration to the focus of infection and decreased the survival rate from 87.5 to 50.0%. Hemopexin-null mice subjected to severe sepsis presented normal neutrophil migration, low bacteremia, and an improvement of 40% in survival rate. Moreover, hemopexin inhibited the neutrophil chemotaxis response evoked by C5a or macrophage inflammatory protein-2 and induced a reduction of CXCR2 and L-selectin as well as the up-regulation of CD11b expression in neutrophil membranes. The inhibitory effect of hemopexin on neutrophil chemotaxis was prevented by serine protease inhibitors or ATP. In addition, serum levels of ATP were decreased 2 hours after severe sepsis. CONCLUSIONS: These data demonstrate for the first time the inhibitory role of hemopexin in neutrophil migration during sepsis and suggest that the therapeutic inhibition of hemopexin or its protease activity could improve neutrophil migration to the focus of infection and survival in sepsis.


Subject(s)
Cell Movement/drug effects , Hemopexin/metabolism , Neutrophils/metabolism , Sepsis/metabolism , Sepsis/mortality , Analysis of Variance , Animals , CD11b Antigen/immunology , CD11b Antigen/metabolism , Cell Movement/immunology , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Down-Regulation , Escherichia coli , Hemopexin/immunology , L-Selectin/metabolism , Mass Spectrometry , Mice , Mice, Inbred Strains , Neutrophils/drug effects , Neutrophils/immunology , Random Allocation , Receptors, Interleukin-8B/immunology , Receptors, Interleukin-8B/metabolism , Sepsis/immunology , Survival Rate , Thioglycolates/pharmacology , Up-Regulation
11.
Proc Natl Acad Sci U S A ; 106(10): 4018-23, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19234125

ABSTRACT

Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2(-/-) mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naïve WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein-coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2(-/-) mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis.


Subject(s)
Cell Movement , Neutrophils/cytology , Receptors, Interleukin-8B/metabolism , Sepsis/immunology , Sepsis/microbiology , Toll-Like Receptor 2/metabolism , Animals , Cell Movement/drug effects , Chemotaxis/drug effects , Down-Regulation/drug effects , G-Protein-Coupled Receptor Kinase 2/metabolism , Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Mice , Neutrophils/drug effects , Neutrophils/enzymology , Peritonitis/complications , Receptors, Interleukin-8B/genetics , Sepsis/complications , Signal Transduction/drug effects , Survival Analysis , Teichoic Acids/administration & dosage , Teichoic Acids/pharmacology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/deficiency
12.
bioRxiv ; 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-33200130

ABSTRACT

Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Neuraminidase (NEU)-mediated cleavage of surface sialic acid has been demonstrated to regulate leukocyte responses. Here, we report that antiviral NEU inhibitors constrain host NEU activity, surface sialic acid release, ROS production, and NETs released by microbial-activated human neutrophils. In vivo, treatment with Oseltamivir results in infection control and host survival in peritonitis and pneumonia models of sepsis. Single-cell RNA sequencing re-analysis of publicly data sets of respiratory tract samples from critical COVID-19 patients revealed an overexpression of NEU1 in infiltrated neutrophils. Moreover, Oseltamivir or Zanamivir treatment of whole blood cells from severe COVID-19 patients reduces host NEU-mediated shedding of cell surface sialic acid and neutrophil overactivation. These findings suggest that neuraminidase inhibitors can serve as host-directed interventions to dampen neutrophil dysfunction in severe infections.

13.
Am J Respir Crit Care Med ; 182(3): 360-8, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20339148

ABSTRACT

RATIONALE: Recovering the neutrophil migration to the infectious focus improves survival in severe sepsis. Recently, we demonstrated that the cystathionine gamma-lyase (CSE)/hydrogen sulfide (H(2)S) pathway increased neutrophil recruitment to inflammatory focus during sterile inflammation. OBJECTIVES: To evaluate if H(2)S administration increases neutrophil migration to infectious focus and survival of mice. METHODS: Sepsis was induced by cecal ligation and puncture (CLP). MEASUREMENTS AND MAIN RESULTS: The pretreatments of mice with H(2)S donors (NaHS or Lawesson's reagent) improved leukocyte rolling/adhesion in the mesenteric microcirculation as well as neutrophil migration. Consequently, bacteremia levels were reduced, hypotension and lung lesions were prevented, and the survival rate increased from approximately 13% to approximately 80%. Even when treatment was delayed (6 h after CLP), a highly significant reduction in mortality compared with untreated mice was observed. Moreover, H(2)S pretreatment prevented the down-regulation of CXCR2 and l-selectin and the up-regulation of CD11b and G protein-coupled receptor kinase 2 in neutrophils during sepsis. H(2)S also prevented the reduction of intercellular adhesion molecule-1 expression in the endothelium of the mesenteric microcirculation in severe sepsis. Confirming the critical role of H(2)S on sepsis outcome, pretreatment with dl-propargylglycine (a CSE inhibitor) inhibited neutrophil migration to the infectious focus, enhanced lung lesions, and induced high mortality in mice subjected to nonsevere sepsis (from 0 to approximately 80%). The beneficial effects of H(2)S were blocked by glibenclamide (a ATP-dependent K(+) channel blocker). CONCLUSIONS: These results showed that H(2)S restores neutrophil migration to the infectious focus and improves survival outcome in severe sepsis by an ATP-dependent K(+) channel-dependent mechanism.


Subject(s)
Cell Movement/drug effects , Hydrogen Sulfide/pharmacology , KATP Channels/physiology , Neutrophils/drug effects , Sepsis/mortality , Sepsis/pathology , Animals , CD11b Antigen/physiology , Down-Regulation/drug effects , Endothelium, Vascular , Intercellular Adhesion Molecule-1/drug effects , L-Selectin/physiology , Male , Mesentery/blood supply , Mice , Neutrophils/physiology , Receptors, Interleukin-8B/physiology , Up-Regulation/drug effects
14.
Neurochem Int ; 151: 105215, 2021 12.
Article in English | MEDLINE | ID: mdl-34710535

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of the nigrostriatal dopaminergic neurons that are associated with motor alterations and non-motor manifestations (such as depression). Neuroinflammation is a process with a critical role in the pathogenesis of PD. In this regard, toll-like receptor 4 (TLR4) is a central mediator of immune response in PD. Moreover, there are gender-related differences in the incidence, prevalence, and clinical features of PD. Therefore, we aimed to elucidate the role of TLR4 in the sex-dependent response to dopaminergic denervation induced by 6-hydroxydopamine (6-OHDA) in mice. Female and male adult wildtype (WT) and TLR4 knockout (TLR4-/-) mice were administered with unilateral injection of 6-OHDA in the dorsal striatum, and non-motor and motor impairments were evaluated for 30 days, followed by biochemistry analysis in the substantia nigra pars compacta (SNc), dorsal striatum, and dorsoventral cortex. Early non-motor impairments (i.e., depressive-like behavior and spatial learning deficits) induced by 6-OHDA were observed in the male WT mice but not in male TLR4-/- or female mice. Motor alterations were observed after administration of 6-OHDA in both strains, and the lack of TLR4 was also related to motor commitment. Moreover, ablation of TLR4 prevented 6-OHDA-induced dopaminergic denervation and microgliosis in the SNc, selectively in female mice. These results reinforced the existence of sex-biased alterations in PD and indicated TLR4 as a promising therapeutic target for the motor and non-motor symptoms of PD, which will help counteract the neuroinflammatory and neurodegenerative processes.


Subject(s)
Brain/drug effects , Parkinson Disease/drug therapy , Sex Factors , Toll-Like Receptor 4/metabolism , Animals , Brain/pathology , Disease Models, Animal , Female , Hydroxydopamines/pharmacology , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Nerve Degeneration/chemically induced , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/pathology , Parkinson Disease/genetics , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/genetics
15.
Phytomedicine ; 86: 153497, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33745762

ABSTRACT

BACKGROUND: p-Cymene and rosmarinic acid are secondary metabolites found in several medicinal plants and spices. Previous studies have demonstrated their anti-inflammatory, antioxidant, and cytoprotective effects. PURPOSE: To evaluate their gastroduodenal antiulcer activity, gastric healing and toxicity in experimental models. METHODS: Preventive antiulcer effects were assessed using oral pre-treatment on HCl/ethanol-induced gastric lesions and cysteamine-induced duodenal lesions models. Gastric healing, the underlining mechanisms and toxicity after repeated doses were carried out using the acetic acid-induced gastric ulcer rat model and oral treatment for 14 days. RESULTS: In the HCl/ethanol-induced gastric ulcer and cysteamine-induced duodenal injury, p-cymene and rosmarinic acid (50-200 mg/kg) decreased significantly the ulcer area, and so prevented lesions formation. In the acetic acid-induced ulcer model, both compounds (200 mg/kg) markedly reduced the ulcerative injury. These effects were related to an increase in the levels of reduced glutathione (GSH) and interleukin (IL)-10, and due to a decrease in malondialdehyde (MDA), IL-1ß, tumor necrosis factor (TNF)-α, total and mitochondrial reactive oxygen species (ROS) levels. Downregulation of factor nuclear kappa B (NFκB) and enhanced expression of suppressor of cytokine signaling (SOCS)3 were also demonstrated. Furthermore, positive vascular endothelial growth factor (VEGF), metalloproteinase (MMP)-2, and cyclooxygenase (COX-2)-stained cells were increased in treated groups. Treatment also upregulated the platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), transforming growth factor (TGF)-ß and epidermal growth factor receptor (EGFR) in gastric tissues. In isolated gastric epithelial cells this healing effect seems to be linked to a modulation of apoptosis, proliferation, survival and protein phosphorylation, such as the extracellular signal-regulated kinases (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK). Oral toxicity investigation for 14 days revealed no alterations in heart, liver, spleen, and kidneys weight nor the biochemical and hematological assessed parameters. p-Cymene and rosmarinic acid also protected animals from body weight loss maintaining feed and water intake. CONCLUSIONS: Data altogether suggest low toxicity, antiulcer and gastric healing activities of p-cymene and rosmarinic acid. Antioxidant and immunomodulatory properties seem to be involved in the curative effect as well as the induction of different factors linked to tissue repair.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Cinnamates/therapeutic use , Cymenes/therapeutic use , Depsides/therapeutic use , Stomach Ulcer/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Male , Plants, Medicinal , Rats , Rats, Wistar , Rosmarinic Acid
16.
J Pain ; 22(8): 996-1013, 2021 08.
Article in English | MEDLINE | ID: mdl-33774154

ABSTRACT

Chemotherapy-Induced Peripheral Neuropathy (CIPN) is a common, difficult-to-treat, and dose-limiting side effect associated with Oxaliplatin (OXA) treatment. In this study, we evaluated the effect of three antioxidants - namely N-acetylcysteine, α-lipoic acid and vitamin E - upon nociceptive parameters and antitumor efficacy of OXA in a tumor-bearing Swiss mice model. Oral treatment with antioxidants inhibited both mechanical and cold allodynia when concomitantly administrated with OXA (preventive protocol), as well as in animals with previously established CIPN (therapeutic protocol). OXA increased Reactive Oxygen Species (ROS) production and lipoperoxidation, and augmented the content of pro-inflammatory cytokines (IL-1ß and TNF-α) and expression of the astrocytic marker Gfap mRNA in the spinal cord. Antioxidants decreased ROS production and lipoperoxidation, and abolished neuroinflammation in OXA-treated animals. Toll-like receptor 4 (Tlr4) and inflammasome enzyme caspase-1/11 knockout mice treated with OXA showed reduced levels of pro-inflammatory cytokines (but not oxidative stress) in the spinal cord, which were associated with resistance to OXA-induced mechanical allodynia. Lastly, antioxidants affected neither antitumor activity nor hematological toxicity of OXA in vivo. The herein presented results are provocative for further evaluation of antioxidants in clinical management of chemotherapy-induced peripheral neuropathy. PERSPECTIVE: This study reports preventive and therapeutic efficacy of orally administrated antioxidants (N-acetylcysteine, α-lipoic-acid and Vitamin-E) in alleviating oxaliplatin-induced peripheral neuropathy in tumor-bearing mice. Antioxidants' anti-nociceptive effects are associated with inhibition of ROS-dependent neuroinflammation, and occur at no detriment of OXA antitumor activity, therefore indicating a translational potential of these compounds.


Subject(s)
Antineoplastic Agents/adverse effects , Antioxidants/pharmacology , Hyperalgesia , Neoplasms/drug therapy , Neuroinflammatory Diseases , Oxaliplatin/adverse effects , Oxidative Stress/drug effects , Peripheral Nervous System Diseases , Spinal Cord , Animals , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/prevention & control , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/metabolism , Toll-Like Receptor 4
17.
J Pharm Pharmacol ; 60(4): 473-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18380920

ABSTRACT

Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha and IL-1beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Capsaicin/therapeutic use , Capsicum/chemistry , Plant Preparations/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Capillary Permeability , Capsaicin/chemistry , Capsaicin/isolation & purification , Carrageenan , Cell Movement/drug effects , Edema/chemically induced , Edema/drug therapy , Exudates and Transudates/drug effects , Inflammation/drug therapy , Inflammation/immunology , Interleukin-1beta/analysis , L-Lactate Dehydrogenase/analysis , Leukocytes/drug effects , Leukocytes/physiology , Male , Mice , Mice, Inbred C57BL , Peritonitis/chemically induced , Peritonitis/drug therapy , Phytotherapy , Plant Preparations/chemistry , Plant Preparations/isolation & purification , Pleurisy/chemically induced , Pleurisy/drug therapy , Rats , Rats, Wistar , Serum Albumin, Bovine/immunology , Tumor Necrosis Factor-alpha/analysis
18.
Front Immunol ; 8: 1890, 2017.
Article in English | MEDLINE | ID: mdl-29375557

ABSTRACT

Although antibiotic-induced dysbiosis has been demonstrated to exacerbate intestinal inflammation, it has been suggested that antibiotic prophylaxis may be beneficial in certain clinical conditions such as acute pancreatitis (AP). However, whether broad-spectrum antibiotics, such as meropenem, influence the dissemination of multidrug-resistant (MDR) bacteria during severe AP has not been addressed. In the currently study, a mouse model of obstructive severe AP was employed to investigate the effects of pretreatment with meropenem on bacteria spreading and disease outcome. As expected, animals subjected to biliopancreatic duct obstruction developed severe AP. Surprisingly, pretreatment with meropenem accelerated the mortality of AP mice (survival median of 2 days) when compared to saline-pretreated AP mice (survival median of 7 days). Early mortality was associated with the translocation of MDR strains, mainly Enterococcus gallinarum into the blood stream. Induction of AP in mice with guts that were enriched with E. gallinarum recapitulated the increased mortality rate observed in the meropenem-pretreated AP mice. Furthermore, naïve mice challenged with a mouse or a clinical strain of E. gallinarum succumbed to infection through a mechanism involving toll-like receptor-2. These results confirm that broad-spectrum antibiotics may lead to indirect detrimental effects during inflammatory disease and reveal an intestinal pathobiont that is associated with the meropenem pretreatment during obstructive AP in mice.

19.
PLoS One ; 9(8): e103734, 2014.
Article in English | MEDLINE | ID: mdl-25084278

ABSTRACT

Pathogen recognition and triggering of the inflammatory response following infection in mammals depend mainly on Toll-like and Nod-like receptors. Here, we evaluated the role of Nod1, Nod2 and MyD88-dependent signaling in the chemokine production and neutrophil recruitment to the infectious site during sepsis induced by cecal ligation and puncture (CLP) in C57Bl/6 mice. We demonstrate that Nod1 and Nod2 are not involved in the release of chemokines and recruitment of neutrophils to the infectious site during CLP-induced septic peritonitis because these events were similar in wild-type, Nod1-, Nod2-, Nod1/Nod2- and Rip2-deficient mice. Consequently, the local and systemic bacterial loads were not altered. Accordingly, neither Nod1 nor Nod2 was involved in the production of the circulating cytokines and in the accumulation of leukocytes in the lungs. By contrast, we showed that MyD88-dependent signaling is crucial for the establishment of the local inflammatory response during CLP-induced sepsis. MyD88-deficient mice were susceptible to sepsis because of an impaired local production of chemokines and defective neutrophil recruitment to the infection site. Altogether, these data show that Nod1, Nod2 and Rip2 are not required for local chemokine production and neutrophil recruitment during CLP-induced sepsis, and they reinforce the importance of MyD88-dependent signaling for initiation of a protective host response.


Subject(s)
Myeloid Differentiation Factor 88/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Sepsis/metabolism , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sepsis/genetics
20.
Int Immunopharmacol ; 17(4): 1206-10, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23973446

ABSTRACT

Behçet's disease (BD) is a systemic inflammatory disorder characterized by recurrent episodes of acute inflammation consisting mainly of neutrophil infiltration around blood vessels in affected tissues. BD probably occurs due to neutrophil-based innate immune responses orchestrated by a complex interplay among gamma-delta T lymphocytes, natural killer T cells, monocytes and Th17 lymphocytes in which type-I interferon is possibly a key element for inflammatory downregulation. However, strong evidence is still scarce. This article compiles the literature in an attempt to summarize the possible mechanisms by which neutrophils are activated in BD and suggests directions for future research.


Subject(s)
Behcet Syndrome/immunology , Neutrophil Activation , Neutrophils/immunology , Animals , Granulocyte Colony-Stimulating Factor/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interferon Type I/immunology , Interleukin-8/immunology , Th17 Cells/immunology , Toll-Like Receptors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL