Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Ann Allergy Asthma Immunol ; 116(4): 321-328.e1, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26822279

ABSTRACT

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD) is diagnosed through graded aspirin challenges that induce hypersensitivity reactions and eicosanoid level changes. It is not known whether diagnostically useful changes also occur after low-dose aspirin challenges that do not induce hypersensitivity reactions. OBJECTIVE: To investigate the utility of low-dose oral aspirin challenges for diagnosing AERD by measuring different clinical parameters and eicosanoid changes. METHODS: Sixteen patients with AERD and 13 patients with aspirin-tolerant asthma underwent oral challenges with low-dose (20 or 40 mg) aspirin and diagnostic oral graded aspirin challenges (up to 325 mg of aspirin). Forced expiratory volume in 1 second, nasal peak flow, the fraction of exhaled nitric oxide (FeNO), and eicosanoid levels in plasma and urine were analyzed. RESULTS: In patients with AERD but not in those with aspirin-tolerant asthma, 40-mg aspirin challenges induced a significant mean (SEM) decrease from baseline in FeNO (19% [5.1%]; P = .001) without causing any hypersensitivity reaction. The FeNO decrease also occurred after higher-dose aspirin challenges (27.8% [4.9%]; P < .001). The sensitivity and specificity of 40-mg aspirin-induced FeNO changes for identifying AERD were 90% and 100% with an area under the curve of 0.98 (95% CI, 0.92-1.00). The low-dose challenge also induced a significant leukotriene E4 urine increase in patients with AERD (from 6.32 [0.08] to 6.91 [0.15] log-pg/mg creatinine; P < .001), but the sensitivity and specificity of these changes were less than for the FeNO changes. CONCLUSION: The low-dose aspirin-induced decrease in FeNO in patients with AERD may be useful for the diagnosis of aspirin allergy without inducing a hypersensitivity reaction. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01320072.


Subject(s)
Allergens/administration & dosage , Aspirin/administration & dosage , Asthma, Aspirin-Induced/diagnosis , Drug Hypersensitivity/diagnosis , Administration, Oral , Adult , Allergens/adverse effects , Aspirin/adverse effects , Female , Humans , Immunization/methods , Leukotriene E4/urine , Male , Middle Aged , Nitric Oxide/metabolism , Sensitivity and Specificity
2.
Am J Pathol ; 184(11): 2868-84, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25128906

ABSTRACT

We evaluated the importance of tumor cell selection for generating gene signatures in non-small cell lung cancer. Tumor and nontumor tissue from macroscopically dissected (Macro) surgical specimens (31 pairs from 32 subjects) was homogenized, extracted, amplified, and hybridized to microarrays. Adjacent scout sections were histologically mapped; sets of approximately 1000 tumor cells and nontumor cells (alveolar or bronchial) were procured by laser capture microdissection (LCM). Within histological strata, LCM and Macro specimens exhibited approximately 67% to 80% nonoverlap in differentially expressed (DE) genes. In a representative subset, LCM uniquely identified 300 DE genes in tumor versus nontumor specimens, largely attributable to cell selection; 382 DE genes were common to Macro, Macro with preamplification, and LCM platforms. RT-qPCR validation in a 33-gene subset was confirmatory (ρ = 0.789 to 0.964, P = 0.0013 to 0.0028). Pathway analysis of LCM data suggested alterations in known cancer pathways (cell growth, death, movement, cycle, and signaling components), among others (eg, immune, inflammatory). A unique nine-gene LCM signature had higher tumor-nontumor discriminatory accuracy (100%) than the corresponding Macro signature (87%). Comparison with Cancer Genome Atlas data sets (based on homogenized Macro tissue) revealed both substantial overlap and important differences from LCM specimen results. Thus, cell selection via LCM enhances expression profiling precision, and confirms both known and under-appreciated lung cancer genes and pathways.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Transcriptome , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Laser Capture Microdissection , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Middle Aged
3.
Anal Biochem ; 443(1): 1-12, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23938772

ABSTRACT

The identification of specific microRNAs (miRNAs) that target a given messenger RNA (mRNA) is essential for studies in gene regulation, but the available bioinformatic software programs are often unreliable. We have developed a unique experimental miRNA affinity assay whereby a 3'UTR RNA is end-labeled with biotin, immobilized, and then used as a bait sequence for affinity pull-down of miRNAs. After washes and release, cloning and sequencing identify the miRNAs. Binding affinity is quantitated by quantitative polymerase chain reaction (qPCR), comparing released and original input concentrations. As an initial demonstration, the TCF8/ZEB1 mRNA affinity pull-down yielded miR-200 family member miRs in the majority of clones, and binding affinity was approximately 100%; virtually all copies of miR-200c bound the immobilized mRNA transcript. For validation in cells, miR-200c strongly inhibited expression of a TCF8 luciferase reporter, native TCF8 mRNA, and protein levels, which contrasted with other recovered miRNAs with lower binding affinities. For Smad4 mRNA, miR-150 (and others) displayed a binding affinity of 39% (or less) yet did not inhibit a Smad4 reporter, native Smad4 mRNA, or protein levels. These results were not predicted by available software. This work demonstrates this miRNA binding affinity assay to be a novel yet facile experimental means of identification of miRNAs targeting a given mRNA.


Subject(s)
3' Untranslated Regions , Biological Assay , Homeodomain Proteins/genetics , MicroRNAs/isolation & purification , Smad4 Protein/genetics , Transcription Factors/genetics , Animals , Biotin , Cloning, Molecular , Epithelial Cells/chemistry , Gene Expression Regulation , Genes, Reporter , Homeodomain Proteins/metabolism , Humans , Immobilized Nucleic Acids/genetics , Immobilized Nucleic Acids/isolation & purification , Liver/chemistry , Luciferases/genetics , Luciferases/metabolism , Mice , MicroRNAs/genetics , Microspheres , Real-Time Polymerase Chain Reaction/methods , Respiratory Mucosa/chemistry , Sensitivity and Specificity , Smad4 Protein/metabolism , Streptavidin , Transcription Factors/metabolism , Zinc Finger E-box-Binding Homeobox 1
4.
Sci Rep ; 13(1): 6620, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095155

ABSTRACT

For detecting field carcinogenesis non-invasively, early technical development and case-control testing of exhaled breath condensate microRNAs was performed. In design, human lung tissue microRNA-seq discovery was reconciled with TCGA and published tumor-discriminant microRNAs, yielding a panel of 24 upregulated microRNAs. The airway origin of exhaled microRNAs was topographically "fingerprinted", using paired EBC, upper and lower airway donor sample sets. A clinic-based case-control study (166 NSCLC cases, 185 controls) was interrogated with the microRNA panel by qualitative RT-PCR. Data were analyzed by logistic regression (LR), and by random-forest (RF) models. Feasibility testing of exhaled microRNA detection, including optimized whole EBC extraction, and RT and qualitative PCR method evaluation, was performed. For sensitivity in this low template setting, intercalating dye-based URT-PCR was superior to fluorescent probe-based PCR (TaqMan). In application, adjusted logistic regression models identified exhaled miR-21, 33b, 212 as overall case-control discriminant. RF analysis of combined clinical + microRNA models showed modest added discrimination capacity (1.1-2.5%) beyond clinical models alone: all subjects 1.1% (p = 8.7e-04)); former smokers 2.5% (p = 3.6e-05); early stage 1.2% (p = 9.0e-03), yielding combined ROC AUC ranging from 0.74 to 0.83. We conclude that exhaled microRNAs are qualitatively measureable, reflect in part lower airway signatures; and when further refined/quantitated, can potentially help to improve lung cancer risk assessment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Case-Control Studies , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Breath Tests/methods , Exhalation
5.
Am J Respir Cell Mol Biol ; 46(3): 365-71, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22021338

ABSTRACT

Many phytochemicals possess antioxidant and cancer-preventive properties, some putatively through antioxidant response element-mediated phase II metabolism, entailing mutagen/oxidant quenching. In our recent studies, however, most candidate phytochemical agents were not potent in inducing phase II genes in normal human lung cells. In this study, we applied a messenger RNA (mRNA)-specific gene expression-based high throughput in vitro screening approach to discover new, potent plant-derived phase II inducing chemopreventive agents. Primary normal human bronchial epithelial (NHBE) cells and immortalized human bronchial epithelial cells (HBECs) were exposed to 800 individual compounds in the MicroSource Natural Products Library. At a level achievable in humans by diet (1.0 µM), 2,3-dihydroxy-4-methoxy-4'-ethoxybenzophenone (DMEBP), triacetylresveratrol (TRES), ivermectin, sanguinarine sulfate, and daunorubicin induced reduced nicotinamide adenine dinucleotide phosphate:quinone oxidoreductase 1 (NQO1) mRNA and protein expression in NHBE cells. DMEBP and TRES were the most attractive agents as coupling potency and low toxicity for induction of NQO1 (mRNA level, ≥3- to 10.8-fold that of control; protein level, ≥ two- to fourfold that of control). Induction of glutathione S-transferase pi mRNA expression was modest, and none was apparent for glutathione S-transferase pi protein expression. Measurements of reactive oxygen species and glutathione/oxidized glutathione ratio showed an antioxidant effect for DMEBP, but no definite effect was found for TRES in NHBE cells. Exposure of NHBE cells to H(2)O(2) induced nuclear translocation of nuclear factor erythroid 2-related factor 2, but this translocation was not significantly inhibited by TRES and DMEBP. These studies show that potency and low toxicity may align for two potential NQO1-inducing agents, DMEBP and TRES.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antioxidants/pharmacology , Bronchi/drug effects , Epithelial Cells/drug effects , High-Throughput Screening Assays , NAD(P)H Dehydrogenase (Quinone)/biosynthesis , Anticarcinogenic Agents/toxicity , Antioxidants/toxicity , Benzophenones/pharmacology , Blotting, Western , Bronchi/cytology , Bronchi/enzymology , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Induction/drug effects , Epithelial Cells/enzymology , Glutathione/metabolism , Glutathione S-Transferase pi/biosynthesis , Humans , NAD(P)H Dehydrogenase (Quinone)/genetics , Polymerase Chain Reaction , RNA, Messenger/biosynthesis , Reactive Oxygen Species/metabolism , Reproducibility of Results , Resveratrol , Stilbenes/pharmacology
6.
Nat Genet ; 54(4): 492-498, 2022 04.
Article in English | MEDLINE | ID: mdl-35410377

ABSTRACT

Although lung cancer risk among smokers is dependent on smoking dose, it remains unknown if this increased risk reflects an increased rate of somatic mutation accumulation in normal lung cells. Here, we applied single-cell whole-genome sequencing of proximal bronchial basal cells from 33 participants aged between 11 and 86 years with smoking histories varying from never-smoking to 116 pack-years. We found an increase in the frequency of single-nucleotide variants and small insertions and deletions with chronological age in never-smokers, with mutation frequencies significantly elevated among smokers. When plotted against smoking pack-years, mutations followed the linear increase in cancer risk until about 23 pack-years, after which no further increase in mutation frequency was observed, pointing toward individual selection for mutation avoidance. Known lung cancer-defined mutation signatures tracked with both age and smoking. No significant enrichment for somatic mutations in lung cancer driver genes was observed.


Subject(s)
Lung Neoplasms , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , Aging/genetics , Child , Epithelial Cells , ErbB Receptors/genetics , Humans , Lung Neoplasms/genetics , Middle Aged , Mutation , Smoking/adverse effects , Smoking/genetics , Young Adult
7.
Curr Opin Pulm Med ; 17(4): 279-85, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21537190

ABSTRACT

PURPOSE OF REVIEW: Chronic obstructive pulmonary disease (COPD) and lung cancer are the leading causes of morbidity and mortality worldwide. The current research is focused on identifying the common and disparate events involved in epigenetic modifications that concurrently occur during the pathogenesis of COPD and lung cancer. The purpose of this review is to describe the current knowledge and understanding of epigenetic modifications in pathogenesis of COPD and lung cancer. RECENT FINDINGS: This review provides an update on advances of how epigenetic modifications are linked to COPD and lung cancer, and their commonalities and disparities. The key epigenetic modification enzymes (e.g. DNA methyltransferases -- CpG methylation, histone acetylases/deacetylases and histone methyltransferases/demethylases) that are identified to play an important role in COPD and lung tumorigenesis and progression are described in this review. SUMMARY: Distinct DNA methyltransferases and histone modification enzymes are differentially involved in pathogenesis of lung cancer and COPD, although some of the modifications are common. Understanding the epigenetic modifications involved in pathogenesis of lung cancer or COPD with respect to common and disparate mechanisms will lead to targeting of epigenetic therapies against these disorders.


Subject(s)
Epigenomics , Lung Neoplasms/genetics , Pulmonary Disease, Chronic Obstructive/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA-Cytosine Methylases/genetics , Histone Acetyltransferases/genetics , Histone Deacetylases/genetics , Histone Demethylases/genetics , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Humans
8.
Lung Cancer ; 154: 99-104, 2021 04.
Article in English | MEDLINE | ID: mdl-33636454

ABSTRACT

BACKGROUND: Aerosolized Azacitidine has been shown to inhibit orthotopic lung cancer growth and induce re-expression of methylated tumor suppressor genes in murine models. We hypothesized that inhaled Azacitidine is safe and effective in reversing epigenetic changes in the bronchial epithelium secondary to chronic smoking. PATIENTS AND METHODS: We report the first in human study of inhaled Azacitidine. Azacitidine in aqueous solution was used to generate an aerosol suspension of 0.25-5 µm particle size. Main inclusion criteria: Stage IV or recurrent NSCLC with predominantly lung involvement, ≥1 prior systemic therapy, ECOG PS 0-1, and adequate pulmonary function. Patients received inhaled Azacitidine daily on days 1-5 and 15-19 of 28-day cycles, at 3 escalating doses (15, 30 and 45 mg/m2 daily). The primary objective was to determine the feasibility and tolerability of this new therapeutic modality. The key secondary objectives included pharmacokinetics, methylation profiles and efficacy. RESULTS: From 3/2015 to 2/2018, eight patients received a median number of 2 (IQR = 1) cycles of inhaled Azacitidine. No clinically significant adverse events were observed, except one patient treated at the highest dose developed an asymptomatic grade 2 decreased DLCO which resolved spontaneously. One patient receiving 12 cycles of therapy had an objective and durable partial response, and two patients had stable disease. Plasma Azacitidine was only briefly detectable in patients treated at the higher doses. Moreover, in 2 of 3 participants who agreed and underwent pre- and post-treatment bronchoscopy, the global DNA methylation in the bronchial epithelium decreased by 24 % and 79 % post-therapy, respectively. The interval between last inhaled treatment and bronchoscopy was 3 days. CONCLUSIONS: Inhaled Azacitidine resulted in negligible plasma levels compared to the previously reported subcutaneous administration and was well-tolerated. The results justify the continued development of inhaled Azacitidine at non-cytotoxic doses for patients with lung-confined malignant and/or premalignant lesions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Azacitidine/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Methylation , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Neoplasm Recurrence, Local , Treatment Outcome
9.
J Nutr ; 140(8): 1404-10, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20554899

ABSTRACT

Many phytochemicals possess cancer-preventive properties, some putatively through phase II metabolism-mediated mutagen/oxidant quenching. We applied human lung cells in vitro to investigate the effects of several candidate phytopreventive agents, including green tea extracts (GTE), broccoli sprout extracts (BSE), epigallocatechin gallate (EGCG), sulforaphane (SFN), phenethyl isothiocyanate (PEITC), and benzyl isothiocyanate (BITC), on inducing phase II enzymes glutathione S-transferase P1 (GSTP1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) at mRNA and protein levels. Primary normal human bronchial epithelial cells (NHBE), immortalized human bronchial epithelial cells (HBEC), and lung adenocarcinoma cells (A549) were exposed to diet-achievable levels of GTE and BSE (0.5, 1.0, 2.0 mg/L), or individual index components EGCG, SFN, PEITC, BITC (0.5, 1.0, 2.0 micromol/L) for 24 h, 48 h, and 6 d, respectively. mRNA assays employed RNA-specific quantitative RT-PCR and protein assays employed Western blotting. We found that in NHBE cells, while GSTP1 mRNA levels were slightly but significantly increased after exposure to GTE or BSE, NQO1 mRNA increased to 2- to 4-fold that of control when exposed to GTE, BSE, or SFN. Effects on NQO1 mRNA expression in HBEC cells were similar. NQO1 protein expression increased up to 11.8-fold in SFN-treated NHBE cells. Both GSTP1 and NQO1 protein expression in A549 cells were constitutively high but not induced under any condition. Our results suggest that NQO1 is more responsive to the studied chemopreventive agents than GSTP1 in human lung cells and there is discordance between single agent and complex mixture effects. We conclude that modulation of lung cell phase II metabolism by chemopreventive agents requires cell- and agent-specific discovery and testing.


Subject(s)
Anticarcinogenic Agents/pharmacology , Glutathione S-Transferase pi/genetics , Lung/enzymology , NAD(P)H Dehydrogenase (Quinone)/genetics , Plant Extracts/pharmacology , Brassica/chemistry , Bronchi , Camellia sinensis/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Division/drug effects , Cell Line , Cell Line, Tumor , Epithelial Cells , Gene Expression/drug effects , Glutathione S-Transferase pi/analysis , Humans , Isothiocyanates/pharmacology , Lung Neoplasms , NAD(P)H Dehydrogenase (Quinone)/analysis , Plant Extracts/chemistry , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sulfoxides , Thiocyanates/pharmacology
10.
Chem Res Toxicol ; 23(7): 1234-44, 2010 Jul 19.
Article in English | MEDLINE | ID: mdl-20443584

ABSTRACT

DNA adducts of carcinogens derived from tobacco smoke and cooked meat were identified by liquid chromatography-electrospray ionization/multistage tandem mass spectrometry (LC-ESI/MS/MS(n)) in saliva samples from 37 human volunteers on unrestricted diets. The N-(deoxyguanosin-8-yl) (dG-C8) adducts of the heterocyclic aromatic amines 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-9H-pyrido[2,3-b]indole (AalphaC), 2-amino-3,8-dimethylmidazo[4,5-f]quinoxaline (MeIQx), and the aromatic amine, 4-aminobiphenyl (4-ABP), were characterized and quantified by LC-ESI/MS/MS(n), employing consecutive reaction monitoring at the MS(3) scan stage mode with a linear quadrupole ion trap (LIT) mass spectrometer (MS). DNA adducts of PhIP were found most frequently: dG-C8-PhIP was detected in saliva samples from 13 of 29 ever-smokers and in saliva samples from 2 of 8 never-smokers. dG-C8-AalphaC and dG-C8-MeIQx were identified solely in saliva samples of three current smokers, and dG-C8-4-ABP was detected in saliva from two current smokers. The levels of these different adducts ranged from 1 to 9 adducts per 10(8) DNA bases. These findings demonstrate that PhIP is a significant DNA-damaging agent in humans. Saliva appears to be a promising biological fluid in which to assay DNA adducts of tobacco and dietary carcinogens by selective LIT MS techniques.


Subject(s)
Carcinogens/analysis , DNA Adducts/analysis , Saliva/chemistry , Tandem Mass Spectrometry/methods , Adult , Aged , Aged, 80 and over , Aminobiphenyl Compounds/analysis , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/analysis , Female , Humans , Imidazoles/analysis , Male , Middle Aged , Smoking
11.
Anal Chem ; 81(2): 809-19, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19086795

ABSTRACT

A two-dimensional linear quadrupole ion trap mass spectrometer (LIT/MS) was employed to simultaneously screen for DNA adducts of environmental, dietary, and endogenous genotoxicants, by data-dependent constant neutral loss scanning followed by triple-stage mass spectrometry (CNL-MS3). The loss of the deoxyribose (dR) from the protonated DNA adducts ([M + H - 116]+) in the MS/MS scan mode triggered the acquisition of MS3 product ion spectra of the aglycone adducts [BH2]+. Five DNA adducts of the tobacco carcinogen 4-aminobiphenyl (4-ABP) were detected in human hepatocytes treated with 4-ABP, and three DNA adducts of the cooked-meat carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) were identified in the livers of rats exposed to MeIQx, by the CNL-MS3 scan mode. Buccal cell DNA from tobacco smokers was screened for DNA adducts of various classes of carcinogens in tobacco smoke including 4-ABP, 2-amino-9H-pyrido[2,3-b]indole (AalphaC), and benzo[a]pyrene (BaP); the cooked-meat carcinogens MeIQx, AalphaC, and 2-amino-1-methyl-6-phenylmidazo[4,5-b]pyridine (PhIP); and the lipid peroxidation products acrolein (AC) and trans-4-hydroxynonenal (HNE). The CNL-MS3 scanning technique can be used to simultaneously screen for multiple DNA adducts derived from different classes of carcinogens, at levels of adduct modification approaching 1 adduct per 108 unmodified DNA bases, when 10 microg of DNA is employed for the assay.


Subject(s)
Carcinogens/analysis , DNA Adducts/analysis , Spectrometry, Mass, Electrospray Ionization , Aminobiphenyl Compounds/administration & dosage , Animals , Carcinogens/chemistry , Cells, Cultured , DNA Adducts/chemistry , Hepatocytes/drug effects , Humans , Liver/chemistry , Liver/drug effects , Male , Mouth Mucosa/chemistry , Mouth Mucosa/drug effects , Quinoxalines/administration & dosage , Rats , Solid Phase Extraction
12.
Respir Res ; 10: 86, 2009 Sep 25.
Article in English | MEDLINE | ID: mdl-19781081

ABSTRACT

BACKGROUND: There is a need for new, noninvasive risk assessment tools for use in lung cancer population screening and prevention programs. METHODS: To investigate the technical feasibility of determining DNA methylation in exhaled breath condensate, we applied our previously-developed method for tag-adapted bisulfite genomic DNA sequencing (tBGS) for mapping of DNA methylation, and adapted it to exhaled breath condensate (EBC) from lung cancer cases and non-cancer controls. Promoter methylation patterns were analyzed in DAPK, RASSF1A and PAX5beta promoters in EBC samples from 54 individuals, comprised of 37 controls [current- (n = 19), former- (n = 10), and never-smokers (n = 8)] and 17 lung cancer cases [current- (n = 5), former- (n = 11), and never-smokers (n = 1)]. RESULTS: We found: (1) Wide inter-individual variability in methylation density and spatial distribution for DAPK, PAX5beta and RASSF1A. (2) Methylation patterns from paired exhaled breath condensate and mouth rinse specimens were completely divergent. (3) For smoking status, the methylation density of RASSF1A was statistically different (p = 0.0285); pair-wise comparisons showed that the former smokers had higher methylation density versus never smokers and current smokers (p = 0.019 and p = 0.031). For DAPK and PAX5beta, there was no such significant smoking-related difference. Underlying lung disease did not impact on methylation density for this geneset. (4) In case-control comparisons, CpG at -63 of DAPK promoter and +52 of PAX5beta promoter were significantly associated with lung cancer status (p = 0.0042 and 0.0093, respectively). After adjusting for multiple testing, both loci were of borderline significance (p(adj) = 0.054 and 0.031). (5) The DAPK gene had a regional methylation pattern with two blocks (1) approximately -215--113 and (2) -84-+26; while similar in block 1, there was a significant case-control difference in methylation density in block 2 (p = 0.045); (6)Tumor stage and histology did not impact on the methylation density among the cases. (7) The results of qMSP applied to EBC correlated with the corresponding tBGS sequencing map loci. CONCLUSION: Our results show that DNA methylation in exhaled breath condensate is detectable and is likely of lung origin. Suggestive correlations with smoking and lung cancer case-control status depend on individual gene and CpG site examined.


Subject(s)
Biomarkers, Tumor/analysis , Breath Tests/methods , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Promoter Regions, Genetic/genetics , Smoking/metabolism , DNA Methylation , Diagnosis, Differential , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
13.
Cancer Res ; 67(17): 7972-6, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17804704

ABSTRACT

MicroRNAs are approximately 22-nucleotide sequences thought to interact with multiple mRNAs resulting in either translational repression or degradation. We previously reported that several microRNAs had variable expression in mammalian cell lines, and we examined one, miR-200c, in more detail. A combination of bioinformatics and quantitative reverse transcription-PCR was used to identify potential targets and revealed that the zinc finger transcription factor transcription factor 8 (TCF8; also termed ZEB1, deltaEF1, Nil-2-alpha) had inversely proportional expression levels to miR-200c. Knockout experiments using anti-microRNA oligonucleotides increased TCF8 levels but with nonspecific effects. Therefore, to investigate target predictions, we overexpressed miR-200c in select cells lines. Ordinarily, the expression level of miR-200c in non-small-cell lung cancer A549 cells is low in contrast to normal human bronchial epithelial cells. Stable overexpression of miR-200c in A549 cells results in a loss of TCF8, an increase in expression of its regulatory target, E-cadherin, and altered cell morphology. In MCF7 (estrogen receptor-positive breast cancer) cells, there is endogenous expression of miR-200c and E-cadherin but TCF8 is absent. Conversely, MDA-MB-231 (estrogen receptor-negative) cells lack detectable miR-200c and E-cadherin (the latter reportedly due to promoter region methylation) but express TCF8. The ectopic expression of miR-200c in this cell line also reduced levels of TCF8, restored E-cadherin expression, and altered cell morphology. Because the down-regulation of E-cadherin is a crucial event in epithelial-to-mesenchymal transition, loss of miR-200c expression could play a significant role in the initiation of an invasive phenotype, and, equally, miR-200c overexpression holds potential for its reversal.


Subject(s)
Cadherins/genetics , Homeodomain Proteins/genetics , MicroRNAs/genetics , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Humans , Models, Biological , Neoplasm Invasiveness/genetics , Transfection , Tumor Cells, Cultured , Zinc Finger E-box-Binding Homeobox 1
14.
Article in English | MEDLINE | ID: mdl-31126090

ABSTRACT

Sarcoidosis is a systemic granulomatous disease of unknown etiology. It may develop in response to an exposure or inflammatory trigger in the background of a genetically primed abnormal immune response. Thus, genetic studies are potentially important to our understanding of the pathogenesis of sarcoidosis. We developed a case-control study which explored the genetic variations between firefighters in the Fire Department of the City of New York (FDNY) with World Trade Center (WTC)-related sarcoidosis and those with WTC exposure, but without sarcoidosis. The loci of fifty-one candidate genes related to granuloma formation, inflammation, immune response, and/or sarcoidosis were sequenced at high density in enhancer/promoter, exonic, and 5' untranslated regions. Seventeen allele variants of human leukocyte antigen (HLA) and non-HLA genes were found to be associated with sarcoidosis, and all were within chromosomes 1 and 6. Our results also suggest an association between extrathoracic involvement and allele variants of HLA and non-HLA genes found not only on chromosomes 1 and 6, but also on chromosomes 16 and 17. We found similarities between genetic variants with WTC-related sarcoidosis and those reported previously in sporadic sarcoidosis cases within the general population. In addition, we identified several allele variants never previously reported in association with sarcoidosis. If confirmed in larger studies with known environmental exposures, these novel findings may provide insight into the gene-environment interactions key to the development of sarcoidosis.


Subject(s)
Environmental Exposure/adverse effects , Occupational Diseases/epidemiology , Occupational Exposure/adverse effects , Sarcoidosis/epidemiology , Sarcoidosis/genetics , September 11 Terrorist Attacks , Adult , Case-Control Studies , Environmental Exposure/statistics & numerical data , Female , Firefighters/statistics & numerical data , Humans , Male , New York City/epidemiology , Occupational Exposure/statistics & numerical data
15.
Cancer Res ; 66(12): 6439-48, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16778223

ABSTRACT

Phase II detoxification of carcinogens is reported to mediate some of the anticarcinogenesis effects of candidate chemopreventive agents. We explored the interaction between sequence variation in the GSTP1 gene promoter and candidate chemopreventive exposure in regulating human GSTP1 expression. Polymorphisms along 1.8 kb of the GSTP1 promoter were identified in leukocytes [peripheral blood mononuclear cells (PBMC)] from 40 Caucasian subjects. Ten promoter polymorphisms (9 previously unreported) displayed strong linkage disequilibrium, yielding identification of three frequently observed haplotypes [HAP1 (43%), HAP2 (36%), and HAP3 (8%)]. Each haplotype was cloned into luciferase reporter constructs and transfected into normal human bronchial epithelial cells. Basal HAP3 reporter activity was significantly elevated (1.8-fold) but decreased to the same levels as HAP2 and HAP1 with increasing concentrations of sulforaphane, benzyl isothiocyanate (BITC), and epigallocatechin gallate (EGCG). To confirm native HAP3 functionality, we quantitated mRNA expression in uncultured PBMCs and in laser microdissected normal lung epithelial cells (MNLEC) from the same patients. Basal mRNA expression was higher in HAP3 individuals [1.8-fold (PBMC) and 4-fold (MNLEC) for HAP3 heterozygotes and 2.3-fold (PBMC), and 15-fold (MNLEC) for the HAP3 homozygote] than in the other genotypes. PBMC GSTP1 mRNA expression correlated to MNLEC expression (R2 = 0.77). After culture and in vitro exposure to sulforaphane, BITC, or EGCG, the elevated GSTP1 mRNA expression of PBMCs from HAP3 individuals decreased to common expression levels. Elevated HAP3 function was confirmed at the protein level in PBMCs (5-fold higher for HAP3 heterozygotes and 7.6-fold for the HAP3 homozygote). These data suggest a potentially protective GSTP1 promoter haplotype and unpredicted inhibitory chemopreventive agent-haplotype interactions.


Subject(s)
Glutathione S-Transferase pi/genetics , Leukocytes, Mononuclear/enzymology , Lung Neoplasms/enzymology , Case-Control Studies , Epithelial Cells/cytology , Epithelial Cells/enzymology , Epithelial Cells/physiology , Glutathione S-Transferase pi/biosynthesis , Haplotypes , Humans , Leukocytes, Mononuclear/physiology , Linkage Disequilibrium , Lung/cytology , Lung/enzymology , Lung/physiology , Lung Neoplasms/genetics , Polymorphism, Genetic , Promoter Regions, Genetic , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transfection
16.
Epigenetics ; 13(3): 264-274, 2018.
Article in English | MEDLINE | ID: mdl-29465290

ABSTRACT

Gene regulatory analysis of highly diverse human tissues in vivo is essentially constrained by the challenge of performing genome-wide, integrated epigenetic and transcriptomic analysis in small selected groups of specific cell types. Here we performed genome-wide bisulfite sequencing and RNA-seq from the same small groups of bronchial and alveolar cells isolated by laser capture microdissection from flash-frozen lung tissue of 12 donors and their peripheral blood T cells. Methylation and transcriptome patterns differed between alveolar and bronchial cells, while each of these epithelia showed more differences from mesodermally-derived T cells. Differentially methylated regions (DMRs) between alveolar and bronchial cells tended to locate at regulatory regions affecting promoters of 4,350 genes. A large number of pathways enriched for these DMRs including GTPase signal transduction, cell death, and skeletal muscle. Similar patterns of transcriptome differences were observed: 4,108 differentially expressed genes (DEGs) enriched in GTPase signal transduction, inflammation, cilium assembly, and others. Prioritizing using DMR-DEG regulatory network, we highlighted genes, e.g., ETS1, PPARG, and RXRG, at prominent alveolar vs. bronchial cell discriminant nodes. Our results show that multi-omic analysis of small, highly specific cells is feasible and yields unique physiologic loci distinguishing human lung cell types in situ.


Subject(s)
DNA Methylation/genetics , Lung/metabolism , PPAR gamma/genetics , Proto-Oncogene Protein c-ets-1/genetics , Retinoid X Receptor gamma/genetics , Alveolar Epithelial Cells/metabolism , Cell Lineage/genetics , Epigenesis, Genetic , GTP Phosphohydrolases/genetics , Gene Regulatory Networks/genetics , Genome, Human/genetics , Humans , Laser Capture Microdissection , Lung/cytology , Promoter Regions, Genetic , Signal Transduction , T-Lymphocytes/metabolism , Transcriptome/genetics , Whole Genome Sequencing
17.
Chest ; 153(1): 114-123, 2018 01.
Article in English | MEDLINE | ID: mdl-29066387

ABSTRACT

BACKGROUND: Sarcoidosis is believed to represent a genetically primed, abnormal immune response to an antigen exposure or inflammatory trigger, with both genetic and environmental factors playing a role in disease onset and phenotypic expression. In a population of firefighters with post-World Trade Center (WTC) 9/11/2001 (9/11) sarcoidosis, we have a unique opportunity to describe the clinical course of incident sarcoidosis during the 15 years postexposure and, on average, 8 years following diagnosis. METHODS: Among the WTC-exposed cohort, 74 firefighters with post-9/11 sarcoidosis were identified through medical records review. A total of 59 were enrolled in follow-up studies. For each participant, the World Association of Sarcoidosis and Other Granulomatous Diseases organ assessment tool was used to categorize the sarcoidosis involvement of each organ system at time of diagnosis and at follow-up. RESULTS: The incidence of sarcoidosis post-9/11 was 25 per 100,000. Radiographic resolution of intrathoracic involvement occurred in 24 (45%) subjects. Lung function for nearly all subjects was within normal limits. Extrathoracic involvement increased, most prominently joints (15%) and cardiac (16%) involvement. There was no evidence of calcium dysmetabolism. Few subjects had ocular (5%) or skin (2%) involvement, and none had beryllium sensitization. Most (76%) subjects did not receive any treatment. CONCLUSIONS: Extrathoracic disease was more prevalent in WTC-related sarcoidosis than reported for patients with sarcoidosis without WTC exposure or for other exposure-related granulomatous diseases (beryllium disease and hypersensitivity pneumonitis). Cardiac involvement would have been missed if evaluation stopped after ECG, 48-h recordings, and echocardiogram. Our results also support the need for advanced cardiac screening in asymptomatic patients with strenuous, stressful, public safety occupations, given the potential fatality of a missed diagnosis.


Subject(s)
Firefighters , Occupational Exposure/adverse effects , Sarcoidosis/epidemiology , September 11 Terrorist Attacks , Adult , Follow-Up Studies , Humans , Male , Middle Aged , New York City/epidemiology
18.
Clin Cancer Res ; 12(17): 5033-9, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16951218

ABSTRACT

PURPOSE: The origins of expression microarray and reverse transcription-PCR (RT-PCR) signals in human saliva were evaluated. EXPERIMENTAL DESIGN: The "RNA" extracts from human saliva samples were treated with vehicle, DNase, or RNase. Two-step amplification and hybridization to Affymetrix 133A cDNA microarrays were then done. Confirmatory RT-PCR experiments used conventionally designed PCR primer pairs for the reference housekeeper transcripts encoding 36B4, beta-actin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA sequences, which are known to be homologous to genomic DNA pseudogene sequences. Negative controls included the omission of reverse transcriptase ("no-RT") to detect any DNA-derived signal. Finally, an RNA-specific RT-PCR strategy eliminated confounding signals from contaminating genomic DNA. RESULTS: Microarray experiments revealed that untreated, DNase-treated, and RNase-treated "RNA" extracts from saliva all yielded negligible overall signals. Specific microarray signals for 36B4, beta-actin, and GAPDH were low, and were unaffected by RNase. Real-time quantitative RT-PCR reactions using conventional, non-RNA-specific primers on saliva samples yielded PCR products for 36B4, beta-actin, and GAPDH; DNase-treated saliva samples did not yield a PCR product, and the "no-RT" and "+RT" conditions yielded similar amounts of PCR product. The RNA-specific RT-PCR strategy, across all conditions, yielded no PCR product from saliva. CONCLUSIONS: The combination of (a) a minimal microarray signal, which was unaffected by RNase treatment, (b) the presence of a conventional RT-PCR housekeeper product in both RNase-treated and no-RT saliva samples, (c) the absence of a conventional RT-PCR housekeeper product in DNase-treated conditions, and (d) the absence of a RNA-specific RT-PCR product shows that any microarray or RT-PCR signal in the saliva must arise from genomic DNA, not RNA. Thus, saliva extracts do not support mRNA expression studies.


Subject(s)
Gene Expression Profiling , RNA, Messenger/genetics , Saliva/chemistry , Actins/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Humans , Oligonucleotide Array Sequence Analysis/methods , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , Ribosomal Proteins/genetics
19.
Cancer Res ; 64(18): 6805-13, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15375000

ABSTRACT

Exfoliated cytologic specimens from mouth (buccal) epithelium may contain viable cells, permitting assay of gene expression for direct and noninvasive measurement of gene-environment interactions, such as for inhalation (e.g., tobacco smoke) exposures. We determined specific mRNA levels in exfoliated buccal cells collected by cytologic brush, using a recently developed RNA-specific real-time quantitative reverse transcription-PCR strategy. In a pilot study, metabolic activity of exfoliated buccal cells was verified by 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium assay in vitro. Transcriptional activity was observed, after timed in vivo exposure to mainstream tobacco smoke resulted in induction of CYP1B1 in serially collected buccal samples from the one subject examined. For a set of 11 subjects, mRNA expression of nine genes encoding carcinogen- and oxidant-metabolizing enzymes qualitatively detected in buccal cells was then shown to correlate with that in laser-microdissected lung from the same individuals (Chi2 = 52.91, P < 0.001). Finally, quantitative real-time reverse transcription-PCR assays for seven target gene (AhR, CYP1A1, CYP1B1, GSTM1, GSTM3, GSTP1, and GSTT1) and three reference gene [glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-actin, and 36B4] transcripts were performed on buccal specimens from 42 subjects. In multivariate analyses, gender, tobacco smoke exposure, and other factors were associated with the level of expression of CYP1B1, GSTP1, and other transcripts on a gene-specific basis, but substantial interindividual variability in mRNA expression remained unexplained. Within the power limits of this pilot study, gene expression signature was not clearly predictive of lung cancer case or control status. This noninvasive and quantitative method may be incorporated into high-throughput human applications for probing gene-environment interactions associated with cancer.


Subject(s)
Environment , Lung Neoplasms/genetics , Mouth Mucosa/physiology , RNA, Messenger/genetics , Acyltransferases/biosynthesis , Acyltransferases/genetics , Aryl Hydrocarbon Hydroxylases , Case-Control Studies , Cytochrome P-450 CYP1B1 , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P-450 Enzyme System/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Glutathione Transferase/biosynthesis , Glutathione Transferase/genetics , Humans , Lung Neoplasms/enzymology , Male , Middle Aged , Mouth Mucosa/enzymology , Multivariate Analysis , Oxidation-Reduction , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction
20.
Clin Cancer Res ; 9(16 Pt 1): 6002-11, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14676126

ABSTRACT

PURPOSE: The regulation of carcinogen metabolism machinery may involve proximate tobacco smoke exposure, hormonal and other endogenous coregulatory factors, and an individual's underlying genetic responsiveness. The mRNA and protein expression patterns of known carcinogen metabolism genes encoding the aromatic hydrocarbon receptor Ahr; the cytochromes P450 CYP1A1 and CYP1B1; glutathione S-transferases GSTM1, GSTM3, GSTP1, and GSTT1; and NADPH quinone oxidoreductase NQO1 were examined. EXPERIMENTAL DESIGN: Paired tumor and nontumor lung tissue from 45 subjects was subject to a recently devised RNA-specific qualitative reverse transcription-PCR strategy, as well as Western immunoblotting. Tobacco exposure measured by plasma biomarkers nicotine and cotinine, plasma estradiol levels, alpha and beta estrogen receptor (ER) expression in the lung, gender, age, and histological diagnosis were then analyzed using multivariate regression models. RESULTS: In nontumor lung tissue, multivariate models identified several correlates of mRNA expression: (a) CYP1B1 in females (positively: smoke status, P=0.024; ER-beta expression, P=0.024); (b) GSTT1 in females (positively: cotinine, P=0.007; negatively: age, P=0.001; ER-beta expression, P=0.005) and in males (positively: plasma estradiol, P=0.015; ER-beta expression, P=0.025); and (c) NQO1 in females (positively: smoke status, P=0.002) and in males (positively: ER-beta expression, P=0.001). CYP1A1 (mRNA, 9.1%) and GSTM1 (mRNA, 17.5%) are uncommonly expressed in human lung. Confirmation by Western immunoassayed protein is described. The results in nontumor tissue differed from that in tumor tissue. CONCLUSIONS: Regulation of carcinogen metabolism genes expressed in human lung seems impacted by hormonal and gender factors, as well as ongoing tobacco exposure. Expression differences between tumor and nontumor tissue in this pathway have both susceptibility and therapeutic implications.


Subject(s)
Carcinogens/metabolism , Lung Neoplasms/metabolism , Lung/metabolism , Oxidoreductases/genetics , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1 , Female , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Lung/pathology , Lung Neoplasms/genetics , Male , Middle Aged , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , RNA, Messenger/metabolism , Receptors, Estrogen/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL