Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
FASEB J ; 37(8): e23062, 2023 08.
Article in English | MEDLINE | ID: mdl-37389962

ABSTRACT

The factors that drive dengue virus (DENV) evolution, and selection of virulent variants are yet not clear. Higher environmental temperature shortens DENV extrinsic incubation period in mosquitoes, increases human transmission, and plays a critical role in outbreak dynamics. In the present study, we looked at the effect of temperature in altering the virus virulence. We found that DENV cultured at a higher temperature in C6/36 mosquito cells was significantly more virulent than the virus grown at a lower temperature. In a mouse model, the virulent strain induced enhanced viremia and aggressive disease with a short course, hemorrhage, severe vascular permeability, and death. Higher inflammatory cytokine response, thrombocytopenia, and severe histopathological changes in vital organs such as heart, liver, and kidney were hallmarks of the disease. Importantly, it required only a few passages for the virus to acquire a quasi-species population harboring virulence-imparting mutations. Whole genome comparison with a lower temperature passaged strain identified key genomic changes in the structural protein-coding regions as well as in the 3'UTR of the viral genome. Our results point out that virulence-enhancing genetic changes could occur in the dengue virus genome under enhanced growth temperature conditions in mosquito cells.


Subject(s)
Dengue Virus , Humans , Animals , Mice , Dengue Virus/genetics , Serogroup , Temperature , Virulence , 3' Untranslated Regions , Disease Models, Animal
2.
IUBMB Life ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38031996

ABSTRACT

Extensive vascular leakage and shock is a major cause of dengue-associated mortality. At present, there are no specific treatments available. Sphingolipid pathway is a key player in the endothelial barrier integrity; and is mediated through the five sphingosine-1-phosphate receptors (S1PR1-S1PR5). Signaling through S1PR2 promotes barrier disruption; and in Dengue virus (DENV)-infection, there is overexpression of this receptor. Fingolimod (FTY720) is a specific agonist that targets the remaining barrier-protective S1P receptors, without targeting S1PR2. In the present study, we explored whether FTY720 treatment can alleviate DENV-induced endothelial hyperpermeability. In functional assays, in both in vitro systems and in AG129 animal models, FTY720 treatment was found effective. Upon treatment, there was complete restoration of the monolayer integrity in DENV serotype 2-infected human microvascular endothelial cells (HMEC-1). At the molecular level, the treatment reversed activation of the S1P pathway. It significantly reduced the phosphorylation of the key molecules such as PTEN, RhoA, and VE-Cadherin; and also, the expression levels of S1PR2. In DENV2-infected AG129 mice treated with FTY720, there was significant improvement in weight gain, in overall clinical symptoms, and in survival. Whereas 100% of the DENV2-infected, untreated animals died by day-10 post-infection, 70% of the FTY720-treated animals were alive; and at the end of the 15-day post-infection observation period, 30% of them were still surviving. There was a significant reduction in the Evan's-blue dye permeability in the organs of FTY720-treated, DENV-2 infected animals; and also improvement in the hemogram, with complete restoration of thrombocytopenia and hepatic function. Our results show that the FDA-approved molecule Fingolimod (FTY720) is a promising therapeutic intervention in severe dengue.

3.
Mol Ther ; 30(5): 2058-2077, 2022 05 04.
Article in English | MEDLINE | ID: mdl-34999210

ABSTRACT

The ongoing COVID-19 pandemic highlights the need to tackle viral variants, expand the number of antigens, and assess diverse delivery systems for vaccines against emerging viruses. In the present study, a DNA vaccine candidate was generated by combining in tandem envelope protein domain III (EDIII) of dengue virus serotypes 1-4 and a dengue virus (DENV)-2 non-structural protein 1 (NS1) protein-coding region. Each domain was designed as a serotype-specific consensus coding sequence derived from different genotypes based on the whole genome sequencing of clinical isolates in India and complemented with data from Africa. This sequence was further optimized for protein expression. In silico structural analysis of the EDIII consensus sequence revealed that epitopes are structurally conserved and immunogenic. The vaccination of mice with this construct induced pan-serotype neutralizing antibodies and antigen-specific T cell responses. Assaying intracellular interferon (IFN)-γ staining, immunoglobulin IgG2(a/c)/IgG1 ratios, and immune gene profiling suggests a strong Th1-dominant immune response. Finally, the passive transfer of immune sera protected AG129 mice challenged with a virulent, non-mouse-adapted DENV-2 strain. Our findings collectively suggest an alternative strategy for dengue vaccine design by offering a novel vaccine candidate with a possible broad-spectrum protection and a successful clinical translation either as a stand alone or in a mix and match strategy.


Subject(s)
COVID-19 , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, DNA , Antibodies, Neutralizing , Antibodies, Viral , Dengue/prevention & control , Dengue Vaccines/genetics , Dengue Virus/genetics , Humans , Pandemics , Viral Envelope Proteins/genetics
4.
Indian J Public Health ; 66(Supplement): S36-S40, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36412471

ABSTRACT

Background: The incidence of breakthrough infection with the emergence of new variants of concern of SARS-CoV-2 is posing a threat, and it is pertinent to understand the role of vaccines in protecting the elderly and people with comorbidities. Objective: The present study was undertaken to understand the natural history of SARS-CoV-2 infection in a closed cohort of the elderly population in an old-age home who have received two doses of COVID-19 vaccination. The study has also undertaken genomic sequencing to identify SARS-CoV-2 variants of concern from an academic perspective. Materials and Methods: A prospective observational study was conducted from March to August 2021 among residents of 11 old-age homes in Kerala who were vaccinated with 2 doses of the COVID-19 vaccine, from 2 weeks following vaccination. Samples with a threshold cycle value of <25 were subjected to targeted sequencing of the spike protein receptor-binding domain coding region. Results: Among the 479 vaccinated individuals, 86 (17.95%) turned positive during the follow-up period. The mean duration of symptoms was 3-5 days, and no hospitalization was required. A phylogenetic analysis of the nucleotide sequences from the samples indicated B.1.617.2 lineage representing the Delta strain. Conclusion: The evidence supports maximizing the vaccine coverage among vulnerable groups to prevent hospitalization and death rate on the verge of the emergence of new variants of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Infant, Newborn , SARS-CoV-2/genetics , COVID-19 Vaccines , Phylogeny , India/epidemiology
5.
J Gen Virol ; 102(7)2021 07.
Article in English | MEDLINE | ID: mdl-34328830

ABSTRACT

The 5' capped, message-sense RNA genome of Chikungunya virus (CHIKV) utilizes the host cell machinery for translation. Translation is regulated by eIF2 alpha at the initiation phase and by eIF4F at cap recognition. Translational suppression by eIF2 alpha phosphorylation occurs as an early event in many alphavirus infections. We observe that in CHIKV-infected HEK293 cells, this occurs as a late event, by which time the viral replication has reached an exponential phase, implying its minimal role in virus restriction. The regulation by eIF4F is mediated through the PI3K-Akt-mTOR, p38 MAPK and RAS-RAF-MEK-ERK pathways. A kinetic analysis revealed that CHIKV infection did not modulate AKT phosphorylation, but caused a significant reduction in p38 MAPK phosphorylation. It caused degradation of phospho-ERK 1/2 by increased autophagy, leaving the PI3K-Akt-mTOR and p38 MAPK pathways for pharmacological targeting. mTOR inhibition resulted in moderate reduction in viral titre, but had no effect on CHIKV E2 protein expression, indicating a minimal role of the mTOR complex in virus replication. Inhibition of p38 MAPK using SB202190 caused a significant reduction in viral titre and CHIKV E2 and nsP3 protein expression. Furthermore, inhibiting the two pathways together did not offer any synergism, indicating that inhibiting the p38 MAPK pathway alone is sufficient to cause restriction of CHIKV replication. Meanwhile, in uninfected cells the fully functional RAS-RAF-MEK-ERK pathway can circumvent the effect of p38 MAPK inhibition on cap-dependent translation. Thus, our results show that host-directed antiviral strategies targeting cellular p38 MAPK are worth exploring against Chikungunya as they could be selective against CHIKV-infected cells with minimal effects on uninfected host cells.


Subject(s)
Autophagy , Chikungunya virus/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Imidazoles/pharmacology , Protein Biosynthesis , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Apoptosis , Cell Line, Tumor , Chikungunya virus/genetics , Chikungunya virus/physiology , Down-Regulation , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , RNA Caps , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Virus Replication/drug effects
6.
Proc Natl Acad Sci U S A ; 114(7): 1666-1671, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28143925

ABSTRACT

Chikungunya virus (CHIKV), an Old World alphavirus, is transmitted to humans by infected mosquitoes and causes acute rash and arthritis, occasionally complicated by neurologic disease and chronic arthritis. One determinant of alphavirus virulence is nonstructural protein 3 (nsP3) that contains a highly conserved MacroD-type macrodomain at the N terminus, but the roles of nsP3 and the macrodomain in virulence have not been defined. Macrodomain is a conserved protein fold found in several plus-strand RNA viruses that binds to the small molecule ADP-ribose. Prototype MacroD-type macrodomains also hydrolyze derivative linkages on the distal ribose ring. Here, we demonstrated that the CHIKV nsP3 macrodomain is able to hydrolyze ADP-ribose groups from mono(ADP-ribosyl)ated proteins. Using mass spectrometry, we unambiguously defined its substrate specificity as mono(ADP-ribosyl)ated aspartate and glutamate but not lysine residues. Mutant viruses lacking hydrolase activity were unable to replicate in mammalian BHK-21 cells or mosquito Aedes albopictus cells and rapidly reverted catalytically inactivating mutations. Mutants with reduced enzymatic activity had slower replication in mammalian neuronal cells and reduced virulence in 2-day-old mice. Therefore, nsP3 mono(ADP-ribosyl)hydrolase activity is critical for CHIKV replication in both vertebrate hosts and insect vectors, and for virulence in mice.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Chikungunya virus/metabolism , N-Glycosyl Hydrolases/metabolism , Viral Nonstructural Proteins/metabolism , Aedes/virology , Amino Acid Sequence , Animals , Animals, Newborn , Binding Sites/genetics , Cell Line , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/pathogenicity , Chlorocebus aethiops , Insect Vectors/virology , N-Glycosyl Hydrolases/genetics , Sequence Homology, Amino Acid , Substrate Specificity , Vero Cells , Viral Nonstructural Proteins/genetics , Virulence/genetics , Virus Replication/genetics
7.
J Gen Virol ; 99(12): 1658-1670, 2018 12.
Article in English | MEDLINE | ID: mdl-30355397

ABSTRACT

A transient increase in trans-endothelial cell permeability in dengue patients leads to vascular leakage and shock syndrome. Here, we analysed the molecular mechanisms that cause permeability changes in human dermal microvascular endothelial cells (HMEC-1) using a direct dengue virus (DENV) infection model or treatment with NS1, a secreted DENV non-structural protein. In HMEC-1 cells, both treatments increase permeability with a concordant increase in the secretion of angiopoietin-2 (Ang-2). There is phosphorylation and loss of the junction protein VE-Cadherin from the inter-endothelial cell junctions and phosphorylation of RhoA. Direct virus infection results in activation of Src by phosphorylation, whereas NS1 treatment alone does not lead to Src activation. Furthermore, treatment with recombinant Ang-1, a physiological antagonist of Ang-2, prevents Ang-2 release, VE-Cadherin phosphorylation and internalization, and phosphorylation of RhoA and Src, resulting in restoration of barrier function. The permeability increase could also be prevented by blocking the Ang1/2 signalling receptor, Tie-2, or using a Rho/ROCK-specific inhibitor. Dasatinib, a Src-family kinase (SFK) inhibitor that inhibits Src phosphorylation, prevents enhanced permeability induced by direct DENV infection whereas in NS1 protein-treated cells its effect is less significant. The results provide important insights on the mechanisms of increased trans-endothelial permeability in DENV infection, and suggest the therapeutic potential of using recombinant Ang-1 or targeting these key molecules to prevent vascular leakage in dengue.


Subject(s)
Angiopoietin-1/metabolism , Antigens, CD/metabolism , Cadherins/metabolism , Dengue Virus/pathogenicity , Endothelial Cells/pathology , Permeability , Viral Nonstructural Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Cell Line , Endothelial Cells/virology , Host-Pathogen Interactions , Humans , Phosphorylation , Protein Processing, Post-Translational
8.
Article in English | MEDLINE | ID: mdl-29733947

ABSTRACT

Dengue has emerged as a major mosquito-borne disease in the tropics and subtropics. In severe dengue, enhanced microvascular endothelial permeability leads to plasma leakage. Direct dengue virus (DENV) infection in human microvascular endothelial cells (HMEC-1) can enhance trans-endothelial leakage. Using a microarray-based analysis, we identified modulation of key endothelial cell signaling pathways in DENV-infected HMEC-1 cells. One among them was the sphingolipid pathway that regulates vascular barrier function. Sphingosine-1-phosphate receptor 2 (S1PR2) and S1PR5 showed significant up-regulation in the microarray data. In DENV-infected cells, the kinetics of S1PR2 transcript expression and enhanced in vitro trans-endothelial permeability showed a correlation. We also observed an internalization and cytoplasmic translocation of VE-Cadherin, a component of adherens junctions (AJ), upon infection indicating AJ disassembly. Further, inhibition of S1PR2 signaling by a specific pharmacological inhibitor prevented translocation of VE-Cadherin, thus helping AJ maintenance, and abrogated DENV-induced trans-endothelial leakage. Our results show that sphingolipid signaling, especially that involving S1PR2, plays a critical role in vascular leakage in dengue.


Subject(s)
Adherens Junctions/metabolism , Capillary Permeability , Dengue Virus/metabolism , Dengue/metabolism , Endothelial Cells/metabolism , Signal Transduction , Adherens Junctions/pathology , Adherens Junctions/virology , Antigens, CD/biosynthesis , Cadherins/biosynthesis , Cell Line , Dengue/pathology , Endothelial Cells/pathology , Endothelial Cells/virology , Humans , Receptors, Lysosphingolipid/biosynthesis , Sphingosine-1-Phosphate Receptors , Up-Regulation
9.
J Proteome Res ; 16(11): 4144-4155, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28959884

ABSTRACT

Chikungunya virus (CHIKV), a positive-stranded RNA virus, can cause neurological complications by infecting the major parenchymal cells of the brain such as neurons and astrocytes. A proteomic analysis of CHIKV-infected human astrocytic cell line U-87 MG revealed tight functional associations among the modulated proteins. The predominant cellular pathways involved were of transcription-translation machinery, cytoskeletol reorganization, apoptosis, ubiquitination, and metabolism. In the proteome, we could also identify a few proteins that are reported to be involved in host-virus interactions. One such protein, Nucleophosmin (NPM1)/B23, a nucleolar protein, showed enhanced cytoplasmic aggregation in CHIKV-infected cells. NPM1 aggregation was predominantly localized in areas wherein CHIKV antigen could be detected. Furthermore, we observed that inhibition of this aggregation using a specific NPM1 oligomerization inhibitor, NSC348884, caused a significant dose-dependent enhancement in virus replication. There was a marked increase in the amount of intracellular viral RNA, and ∼105-fold increase in progeny virions in infected cells. Our proteomic analysis provides a comprehensive spectrum of host proteins modulated in response to CHIKV infection in astrocytic cells. Our results also show that NPM1/B23, a multifunctional chaperone, plays a critical role in restricting CHIKV replication and is a possible target for antiviral strategies.


Subject(s)
Astrocytes/chemistry , Chikungunya virus/physiology , Nuclear Proteins/physiology , Proteome/analysis , Cell Line , Chikungunya Fever/metabolism , Humans , Nucleophosmin , Virus Replication
10.
J Neurovirol ; 23(6): 886-902, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29067635

ABSTRACT

Interferon regulated genes (IRGs) are critical in controlling virus infections. Here, we analyzed the expression profile of IRGs in the brain tissue in a mouse model of chikungunya virus (CHIKV) neurovirulence. Neurovirulence is one of the newer complications identified in disease caused by re-emerging strains of CHIKV, an alphavirus with positive-strand RNA in the Togaviridae family. In microarray analysis, we identified significant upregulation of 269 genes, out of which a predominant percentage (76%) was IRGs. The highly modulated IRGs included Ifit1, Ifi44, Ddx60, Usp18, Stat1, Rtp4, Mnda, Gbp3, Gbp4, Gbp7, Oasl2, Oas1g, Ly6a, Igtp, and Gbp10, along with many others exhibiting lesser changes in expression levels. We found that these IRG mRNA transcripts are modulated in parallel across CHIKV-infected mouse brain tissues, human neuronal cell line IMR-32 and hepatic cell line Huh-7. The genes identified to be highly modulated both in mouse brain and human neuronal cells were Ifit1, Ifi44, Ddx60, Usp18, and Mnda. In Huh-7 cells, however, only two IRGs (Gbp4 and Gbp7) showed a similar level of upregulation. Concordant modulation of IRGs in both mice and human cells indicates that they might play important roles in regulating CHIKV replication in the central nervous system (CNS). The induction of several IRGs in CNS during infection underscores the robustness of IRG-mediated innate immune response in CHIKV restriction. Further studies on these IRGs would help in evolving possibilities for their targeting in host-directed therapeutic interventions against CHIKV.


Subject(s)
Chikungunya Fever/genetics , Chikungunya virus/immunology , Host-Pathogen Interactions , Interferon Regulatory Factors/genetics , RNA, Messenger/genetics , Transcriptome/immunology , Viral Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Antigens/genetics , Antigens/immunology , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/immunology , Brain/immunology , Brain/virology , Carrier Proteins/genetics , Carrier Proteins/immunology , Cell Line , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/pathogenicity , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/immunology , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/immunology , Disease Models, Animal , Endopeptidases/genetics , Endopeptidases/immunology , Gene Expression Regulation , Hepatocytes/immunology , Hepatocytes/virology , Humans , Immunity, Innate , Interferon Regulatory Factors/immunology , Mice , Mice, Inbred BALB C , Microarray Analysis , Neurons/immunology , Neurons/virology , RNA, Messenger/immunology , RNA-Binding Proteins , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Ubiquitin Thiolesterase , Viral Proteins/immunology
11.
Indian J Med Res ; 142 Suppl: S1-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26905233

ABSTRACT

BACKGROUND & OBJECTIVES: Epidemiological interventions and mosquito control are the available measures for dengue control. The former approach uses serotype and genetic information on the circulating virus strains. Dengue has been frequently reported from Nepal, but this information is mostly lacking. The present study was done to generate a comprehensive clinical and virological picture of a dengue outbreak in Nepal during 2013. METHODS: A hospital-based study involving patients from five districts of Nepal was carried out. Demographic information, clinical details and dengue serological status were obtained. Viral RNA was characterized at the molecular level by reverse-transcription polymerase chain reaction (RT-PCR), nucleotide sequencing and phylogenetic analysis. RESULTS: From among the 2340 laboratory-confirmed dengue cases during the study period, 198 patients consented for the study. Clinically they had fever (100%), headache (59.1%), rashes (18.2%), retro-orbital pain (30.3%), vomiting (15.1%), joint pain (28.8%) and thrombocytopenia (74.3%). Fifteen (7.5%) of them had mucosal bleeding manifestations, and the rest were uncomplicated dengue fever. The patients were mostly adults with a mean age of 45.75 ± 38.61 yr. Of the 52 acute serum samples tested, 15 were positive in RT-PCR. The causative virus was identified as DENV serotype 2 belonging to the Cosmopolitan genotype. INTERPRETATIONS & CONCLUSIONS: We report here the involvement of DENV serotype 2 in an outbreak in Nepal in 2013. Earlier outbreaks in the region in 2010 were attributed to serotype 1 virus. As serotype shifts are frequently associated with secondary infections and severe disease, there is a need for enhancing surveillance especially in the monsoon and post-monsoon periods to prevent large-scale, severe dengue outbreaks in the region.


Subject(s)
Dengue Virus/isolation & purification , Dengue/epidemiology , Phylogeny , Adolescent , Adult , Aged , Child , Child, Preschool , Dengue/blood , Dengue/pathology , Dengue/virology , Dengue Virus/classification , Dengue Virus/pathogenicity , Disease Outbreaks , Female , Humans , Male , Middle Aged , Mosquito Control , Nepal , RNA, Viral/blood , Seasons , Serogroup
12.
Lancet Reg Health Southeast Asia ; 22: 100337, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38482148

ABSTRACT

Background: Dengue shows high geographic heterogeneity within and across endemic countries. In the context of increasing burden and predicted outbreaks due to climate change, understanding the heterogeneity will enable us to develop region specific targeted interventions, including vaccination. World Health Organisation (WHO) suggests standard methodologies to study the burden and heterogeneity at national and subnational levels. Regional studies with robust and standard methodology to capture heterogeneity are scarce. We estimated the seroprevalence of dengue in children aged 9-12 years and the force of infection in Kerala, India, from where Zika cases also have been reported recently. Methods: We conducted a school-based cross-sectional survey in 38 clusters; selected by stratified random sampling, representing rural, urban, high burden and low-burden administrative units. Validation of Indirect IgG ELISA was done by Plaque Reduction Neutralization Test (PRNT90) using the local isolates of all four serotypes. Force of infection (FOI) was estimated using the WHO-FOI calculator. We conducted a follow-up survey among a subsample of seronegative children, to estimate the rate of sero-conversion. Results: Among 5236 children tested, 1521 were positive for anti-dengue IgG antibody. The overall seroprevalence in the state was 29% (95% CI 24.1-33.9). The validity corrected seroprevalence was 30.9% in the overall sample, 46.9% in Thiruvananthapuram, 26.9% in Kozhikkode and 24.9% in Kollam. Age-specific seroprevalence increased with age; 25.7% at 9 years, 29.5% at 10 years, 30.9% at 11 years and 33.9% at 12 years. Seroprevalence varied widely across clusters (16.1%-71.4%). The estimated force of infection was 3.3/100 person-years and the seroconversion rate was 4.8/100 person-years. 90% of children who tested positive were not aware of dengue infection. All the four serotypes were identified in PRNT and 40% of positive samples had antibodies against multiple serotypes. Interpretation: The study validates the WHO methodology for dengue serosurveys and confirms its feasibility in a community setting. The overall seroprevalence in the 9-12 year age group is low to moderate in Kerala; there are regional variations; high burden and low burden clusters co-exist in the same districts. The actual burden of dengue exceeds the reported numbers. Heterogeneity in prevalence, the high proportion of inapparent dengue and the hyperendemic situation suggest the need for region-specific and targeted interventions, including vaccination. Funding: World Health Organization.

13.
Virol J ; 10: 37, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23360780

ABSTRACT

BACKGROUND: Local epidemiology of Dengue is defined by the genetic diversity of the circulating Dengue virus (DENV) strains. This important information is not available for the virus strains from most parts of the Indian subcontinent. The present study focused on the genetic diversity of the serotype 3 DENV strains (DENV-3) from India. RESULTS: A total of 22 DENV-3 strains identified by reverse-transcription PCR analysis of serum samples from 709 patients were studied. These samples were collected over a period of 4 years (2008-2011) from dengue fever suspected patients from Kerala, a dengue endemic state in South India. Comparison of a 1740bp nucleotide sequence of the viral Capsid-Pre-membrane-Envelope coding region of our strains and previously reported DENV-3 strains from India, South Asia and South America revealed non-synonymous substitutions that were genotype III-specific as well as sporadic. Evidence of positive selection was detected in the I81 amino acid residue of the envelope protein. Out of the 22 samples, three had I81A and 18 had I81V substitutions. In the phylogenetic analysis by maximum likelihood method the strains from Kerala clustered in two different lineages (lineage III and IV) within genotype III clade of DENV-3 strains. The ten strains that belonged to lineage IV had a signature amino acid substitution T219A in the envelope protein. Interestingly, all these strains were found to be closely related to a Singapore strain GU370053 isolated in 2007. CONCLUSIONS: Our study identifies for the first time the presence of lineage IV strains in the Indian subcontinent. Results indicate the possibility of a recent exotic introduction and also a shift from the existing lineage III strains to lineage IV. Lineage shifts in DENV-3 strains have been attributed to dramatic increase in disease severity in many parts of the world. Hence the present observation could be significant in terms of the clinical severity of future dengue cases in the region.


Subject(s)
Dengue Virus/classification , Dengue Virus/genetics , Dengue/virology , Genetic Variation , Cluster Analysis , Dengue/epidemiology , Dengue Virus/isolation & purification , Genotype , Humans , India/epidemiology , Molecular Epidemiology , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Serum/virology , Viral Structural Proteins/genetics
14.
Microbiol Spectr ; 11(4): e0537122, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37409962

ABSTRACT

Chikungunya virus (CHIKV) hijacks host cell machinery to support its replication. Nucleophosmin 1 (NPM1/B23), a nucleolar phosphoprotein, is one of the host proteins known to restrict CHIKV infection; however, the mechanistic details of the antiviral role of NPM1 are not elucidated. It was seen in our experiments that the level of NPM1 expression affected the expression levels of interferon-stimulated genes (ISGs) that play antiviral roles in CHIKV infection, such as IRF1, IRF7, OAS3, and IFIT1, indicating that one of the antiviral mechanisms could be through modulation of interferon-mediated pathways. Our experiments also identified that for CHIKV restriction, NPM1 must move from the nucleus to the cytoplasm. A deletion of the nuclear export signal (NES), which confines NPM1 within the nucleus, abolishes its anti-CHIKV action. We observed that NPM1 binds CHIKV nonstructural protein 3 (nsP3) strongly via its macrodomain, thereby exerting a direct interaction with viral proteins to limit infection. Based on site-directed mutagenesis and coimmunoprecipitation studies, it was also observed that amino acid residues N24 and Y114 of the CHIKV nsP3 macrodomain, known to be involved in virus virulence, bind ADP-ribosylated NPM1 to inhibit infection. Overall, the results show a key role of NPM1 in CHIKV restriction and indicate it as a promising host target for developing antiviral strategies against CHIKV. IMPORTANCE Chikungunya, a recently reemerged mosquito-borne infection caused by a positive-sense, single-stranded RNA virus, has caused explosive epidemics in tropical regions. Unlike the classical symptoms of acute fever and debilitating arthralgia, incidences of neurological complications and mortality were reported. Currently there are no antivirals or commercial vaccines available against chikungunya. Like all viruses, CHIKV uses host cellular machinery for establishment of infection and successful replication. To counter this, the host cell activates several restriction factors and innate immune response mediators. Understanding these host-virus interactions helps to develop host-targeted antivirals against the disease. Here, we report the antiviral role of the multifunctional host protein NPM1 against CHIKV. The significant inhibitory effect of this protein against CHIKV involves its increased expression and movement from its natural location within the nucleus to the cytoplasm. There, it interacts with functional domains of key viral proteins. Our results support ongoing efforts toward development of host-directed antivirals against CHIKV and other alphaviruses.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Humans , Chikungunya virus/genetics , Chikungunya Fever/metabolism , Nucleophosmin , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , Interferons
15.
J Ethnopharmacol ; 309: 116366, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36914036

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sauropus androgynus is a medicinal shrub used for the treatment of fever in ethnomedical traditions in various Southeast Asian countries. AIM OF THE STUDY: This study was aimed to identify antiviral principles from S. androgynus against Chikungunya virus (CHIKV), a major mosquito-borne pathogen that re-emerged in the last decade, and to unravel their mechanism of action. MATERIALS AND METHODS: Hydroalcoholic extract of S. androgynus leaves was screened for anti-CHIKV activity using cytopathic effect (CPE) reduction assay. The extract was subjected to activity guided isolation and the resultant pure molecule was characterized by GC-MS, Co-GC and Co-HPTLC. The isolated molecule was further evaluated for its effect by plaque reduction assay, Western blot and immunofluorescence assays. In silico docking with CHIKV envelope proteins and molecular dynamics simulation (MD) analyses were used to elucidate its possible mechanism of action. RESULTS: S. androgynus hydroalcoholic extract showed promising anti-CHIKV activity and its active component, obtained by activity guided isolation, was identified as ethyl palmitate (EP), a fatty acid ester. At 1 µg/mL, EP led to 100% inhibition of CPE and a significant 3 log10 reduction in CHIKV replication in Vero cells at 48 h post-infection. EP was highly potent with an EC50 of 0.0019 µg/mL (0.0068 µM) and a very high selectivity index. EP treatment significantly reduced viral protein expression, and time of addition studies revealed that it acts at the stage of viral entry. A strong binding to the viral envelope protein E1 homotrimer during entry, thus preventing viral fusion, was identified as a possible mechanism by which EP imparts its antiviral effect. CONCLUSIONS: S. androgynus contains EP as a potent antiviral principle against CHIKV. This justifies the use of the plant against febrile infections, possibly caused by viruses, in various ethnomedical systems. Our results also prompt more studies on fatty acids and their derivatives against viral diseases.


Subject(s)
Chikungunya Fever , Chikungunya virus , Plants, Medicinal , Animals , Chlorocebus aethiops , Chikungunya virus/physiology , Vero Cells , Cell Line , Chikungunya Fever/drug therapy , Chikungunya Fever/metabolism , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Medicine, Traditional
16.
Vaccines (Basel) ; 10(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36423034

ABSTRACT

Chikungunya virus (CHIKV) re-emergence in the last decade has resulted in explosive epidemics. Along with the classical symptoms of fever and debilitating arthralgia, there were occurrences of unusual clinical presentations such as neurovirulence and mortality. These generated a renewed global interest to develop prophylactic vaccines. Here, using the classical approach of virus attenuation, we developed an attenuated CHIKV strain (RGCB355/KL08-p75) for the purpose. Repeated passaging (75 times) of a local clinical isolate of ECSA lineage virus in U-87 MG human astrocytoma cells, an interferon-response-deficient cell line, resulted in efficient adaptation and attenuation. While experimental infection of 3-day old CHIKV-susceptible BALB/c pups with the parent strain RGCB355/KL08-p4 resulted in death of all the animals, there was 100% survival in mice infected with the attenuated p75. In adult, immunocompetent, CHIKV-non-susceptible C57BL/6 mice, inoculation with p75 induced high antibody response without any signs of disease. Both p4 and p75 strains are uniformly lethal to interferon-response-deficient AG129 mice. Passive protection studies in AG129 mice using immune serum against p75 resulted in complete survival. Whole-genome sequencing identified novel mutations that might be responsible for virus attenuation. Our results establish the usefulness of RGCB355/KL08-p75 as a strain for vaccine development against chikungunya.

17.
Virol J ; 8: 363, 2011 Jul 23.
Article in English | MEDLINE | ID: mdl-21781334

ABSTRACT

BACKGROUND: The human hepatitis B virus (HBV), a member of the hepadna viridae, causes acute or chronic hepatitis B, and hepatocellular carcinoma (HCC). The duck hepatitis B virus (DHBV) infection, a dependable and reproducible model for hepadna viral studies, does not result in HCC unlike chronic HBV infection. Information on differential gene expression in DHBV infection might help to compare corresponding changes during HBV infection, and to delineate the reasons for this difference. FINDINGS: A subtractive hybridization cDNA library screening of in vitro DHBV infected, cultured primary duck hepatocytes (PDH) identified cDNAs of 42 up-regulated and 36 down-regulated genes coding for proteins associated with signal transduction, cellular respiration, transcription, translation, ubiquitin/proteasome pathway, apoptosis, and membrane and cytoskeletal organization. Those coding for both novel as well as previously reported proteins in HBV/DHBV infection were present in the library. An inverse modulation of the cDNAs of ten proteins, reported to play role in human HCC, such as that of Y-box binding protein1, Platelet-activating factor acetylhydrolase isoform 1B, ribosomal protein L35a, Ferritin, α-enolase, Acid α-glucosidase and Caspase 3, copper-zinc superoxide dismutase (CuZnSOD), Filamin and Pyruvate dehydrogenase, was also observed in this in vitro study. CONCLUSIONS: The present study identified cDNAs of a number of genes that are differentially modulated in in vitro DHBV infection of primary duck hepatocytes. Further correlation of this differential gene expression in in vivo infection models would be valuable to understand the little known aspects of the hepadnavirus biology.


Subject(s)
Gene Expression Profiling , Hepatitis B Virus, Duck/growth & development , Hepatitis B Virus, Duck/pathogenicity , Hepatocytes/virology , Animals , Cells, Cultured , Ducks , Gene Library , Nucleic Acid Hybridization
18.
BMC Bioinformatics ; 11 Suppl 1: S7, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20122244

ABSTRACT

BACKGROUND: Defensins comprise a group of antimicrobial peptides, widely recognized as important elements of the innate immune system in both animals and plants. Cationicity, rather than the secondary structure, is believed to be the major factor defining the antimicrobial activity of defensins. To test this hypothesis and to improve the activity of the newly identified avian beta-defensin Apl_AvBD2 by enhancing the cationicity, we performed in silico site directed mutagenesis, keeping the predicted secondary structure intact. Molecular dynamics (MD) simulation studies were done to predict the activity. Mutant proteins were made by in vitro site directed mutagenesis and recombinant protein expression, and tested for antimicrobial activity to confirm the results obtained in MD simulation analysis. RESULTS: MD simulation revealed subtle, but critical, structural variations between the wild type Apl_AvBD2 and the more cationic in silico mutants, which were not detected in the initial structural prediction by homology modelling. The C-terminal cationic 'claw' region, important in antimicrobial activity, which was intact in the wild type, showed changes in shape and orientation in all the mutant peptides. Mutant peptides also showed increased solvent accessible surface area and more number of hydrogen bonds with the surrounding water molecules. In functional studies, the Escherichia coli expressed, purified recombinant mutant proteins showed total loss of antimicrobial activity compared to the wild type protein. CONCLUSION: The study revealed that cationicity alone is not the determining factor in the microbicidal activity of antimicrobial peptides. Factors affecting the molecular dynamics such as hydrophobicity, electrostatic interactions and the potential for oligomerization may also play fundamental roles. It points to the usefulness of MD simulation studies in successful engineering of antimicrobial peptides for improved activity and other desirable functions.


Subject(s)
Avian Proteins/chemistry , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , beta-Defensins/chemistry , Animals , Antimicrobial Cationic Peptides , Birds , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Structure, Secondary , Recombinant Proteins/chemistry
19.
Virol J ; 7: 189, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20704755

ABSTRACT

Chikungunya virus (CHIKV), an arthritogenic alphavirus, is transmitted to humans by infected Aedes (Ae.) aegypti and Ae.albopictus mosquitoes. In the study, reverse-transcription PCR (RT PCR) and virus isolation detected CHIKV in patient samples and also in adult Ae.albopictus mosquitoes that was derived from larvae collected during a chikungunya (CHIK) outbreak in Kerala in 2009. The CHIKV strains involved in the outbreak were the East, Central and South African (ECSA) genotype that had the E1 A226V mutation. The viral strains from the mosquitoes and CHIK patients from the same area showed a close relationship based on phylogenetic analysis. Genetic characterization by partial sequencing of non-structural protein 2 (nsP2; 378 bp), envelope E1 (505 bp) and E2 (428 bp) identified one critical mutation in the E2 protein coding region of these CHIKV strains. This novel, non-conservative mutation, L210Q, consistently present in both human and mosquito-derived samples studied, was within the region of the E2 protein (amino acids E2 200-220) that determines mosquito cell infectivity in many alpha viruses. Our results show the involvement of Ae. albopictus in this outbreak in Kerala and appearance of CHIKV with novel genetic changes. Detection of virus in adult mosquitoes, emerged in the laboratory from larvae, also points to the possibility of transovarial transmission (TOT) of mutant CHIKV strains in mosquitoes.


Subject(s)
Aedes/virology , Alphavirus Infections/epidemiology , Alphavirus Infections/virology , Chikungunya virus/classification , Chikungunya virus/isolation & purification , Disease Outbreaks , Amino Acid Substitution/genetics , Animals , Chikungunya virus/genetics , Cluster Analysis , Humans , India/epidemiology , Mutation, Missense , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Virus Cultivation
SELECTION OF CITATIONS
SEARCH DETAIL