Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Mater ; 13(5): 524-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24728464

ABSTRACT

Polymer microparticles with unique, decodable identities are versatile information carriers with a small footprint. Widespread incorporation into industrial processes, however, is limited by a trade-off between encoding density, scalability and decoding robustness in diverse physicochemical environments. Here, we report an encoding strategy that combines spatial patterning with rare-earth upconversion nanocrystals, single-wavelength near-infrared excitation and portable CCD (charge-coupled device)-based decoding to distinguish particles synthesized by means of flow lithography. This architecture exhibits large, exponentially scalable encoding capacities (>10(6) particles), an ultralow decoding false-alarm rate (<10(-9)), the ability to manipulate particles by applying magnetic fields, and pronounced insensitivity to both particle chemistry and harsh processing conditions. We demonstrate quantitative agreement between observed and predicted decoding for a range of practical applications with orthogonal requirements, including covert multiparticle barcoding of pharmaceutical packaging (refractive-index matching), multiplexed microRNA detection (biocompatibility) and embedded labelling of high-temperature-cast objects (temperature resistance).


Subject(s)
Polymers/chemistry , Biocompatible Materials/chemistry , Chemical Engineering , Drug Packaging , Electrochemical Techniques , Hot Temperature , Magnetic Fields , Metal Nanoparticles/chemistry , Metals, Rare Earth/chemistry , MicroRNAs/analysis , Nanoparticles/chemistry , Particle Size , Polymers/chemical synthesis
2.
Eur Polym J ; 72: 386-412, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26594056

ABSTRACT

Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field.

3.
Angew Chem Int Ed Engl ; 54(8): 2477-81, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25565630

ABSTRACT

Although microRNAs (miRNAs) have been shown to be excellent indicators of disease state, current profiling platforms are insufficient for clinical translation. Here, we demonstrate a versatile hydrogel-based microfluidic approach and novel amplification scheme for entirely on-chip, sensitive, and highly specific miRNA detection without the risk of sequence bias. A simulation-driven approach is used to engineer the hydrogel geometry and the gel-reaction environment is chemically optimized for robust detection performance. The assay provides 22.6 fM sensitivity over a three log range, demonstrates multiplexing across at least four targets, and requires just 10.3 ng of total RNA input in a 2 hour and 15 minutes assay.


Subject(s)
Gene Expression Profiling/instrumentation , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , MicroRNAs/analysis , Nucleic Acid Amplification Techniques , Oils/chemistry , Oligonucleotide Array Sequence Analysis , Humans , MicroRNAs/metabolism , Microfluidic Analytical Techniques
4.
Anal Chem ; 85(24): 12099-107, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24237051

ABSTRACT

Multiplexed, sensitive, and on-chip molecular diagnostic assays are essential in both clinical and research settings. In past work, running reactions in nanoliter- to femtoliter-sized volumes such as microwells or droplets has led to significant increases in detection sensitivities. At the same time, hydrogels have emerged as attractive scaffolds for bioassays due to their nonfouling, flexible, and aqueous properties. In this paper, we combine these concepts and develop a novel platform in which hydrogel compartments are used as individually confined reaction volumes within a fluorinated oil phase. We fabricate functional and versatile hydrogel microstructures in microfluidic channels that are physically isolated from each other using a surfactant-free fluorinated oil phase, generating picoliter- to nanoliter-sized immobilized aqueous reaction compartments that are readily functionalized with biomolecules. In doing so, we achieve monodisperse reaction volumes with an aqueous interior while exploiting the unique chemistry of a hydrogel, which provides a solid and porous binding scaffold for biomolecules and is impenetrable to oil. Furthermore, our lithographically defined reaction volumes are readily customized with respect to geometry and chemistry within the same channel, allowing rational tuning of the confined reaction volume on a post-to-post basis without needing to use surfactants to maintain stability. We design and implement a multiplexed signal amplification assay in which gel-bound enzymes turn over small molecule substrate into fluorescent product in the oil-confined gel compartment, providing significant signal enhancement. Using short (20 min) amplification times, the encapsulation scheme provides up to 2 orders of magnitude boost of signal in nucleic acid detection assays relative to direct labeling and does not suffer from any cross-talk between the posts. We ultimately demonstrate up to 57-fold increase in nucleic acid detection sensitivity compared to a direct labeling scheme.


Subject(s)
Biological Assay/methods , Hydrogels/chemistry , Microfluidic Analytical Techniques/methods , Oils/chemistry , DNA/analysis , DNA/chemistry , DNA Probes/chemistry , Polyethylene Glycols/chemistry , Porosity
5.
Proc Natl Acad Sci U S A ; 106(37): 15702-7, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19717422

ABSTRACT

Determining the mechanism by which tRNAs rapidly and precisely transit through the ribosomal A, P, and E sites during translation remains a major goal in the study of protein synthesis. Here, we report the real-time dynamics of the L1 stalk, a structural element of the large ribosomal subunit that is implicated in directing tRNA movements during translation. Within pretranslocation ribosomal complexes, the L1 stalk exists in a dynamic equilibrium between open and closed conformations. Binding of elongation factor G (EF-G) shifts this equilibrium toward the closed conformation through one of at least two distinct kinetic mechanisms, where the identity of the P-site tRNA dictates the kinetic route that is taken. Within posttranslocation complexes, L1 stalk dynamics are dependent on the presence and identity of the E-site tRNA. Collectively, our data demonstrate that EF-G and the L1 stalk allosterically collaborate to direct tRNA translocation from the P to the E sites, and suggest a model for the release of E-site tRNA.


Subject(s)
Peptide Elongation Factor G/chemistry , Peptide Elongation Factor G/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Allosteric Regulation , Allosteric Site , Biophysical Phenomena , Fluorescence Resonance Energy Transfer , Kinetics , Macromolecular Substances , Models, Molecular , Protein Biosynthesis , Protein Conformation , RNA, Transfer/chemistry , Ribosomes/chemistry , Ribosomes/metabolism
6.
Methods Mol Biol ; 2394: 211-230, 2022.
Article in English | MEDLINE | ID: mdl-35094331

ABSTRACT

Droplette (US 9,700,686 B2 and PCT/US2016/035695) is the first portable and contact-free transdermal technology comprising the unique combination of a piezoelectric transducer and a pneumatic diaphragm pump to deliver large biomolecules including nucleic acid therapeutics (NATs) deep into cells, and into skin and soft tissue for effective delivery over short timescales. The droplets that come out of the device are 10-50× smaller upon impact than what is created through other commercial atomizers, such as the piezoelectric transducer alone. This device has been tested extensively in vitro, in vivo and in IRB approved human studies. The Droplette device delivers metered doses using a water droplet dispersal technology already commonly used in humidifier devices, by utilizing a piezoelectric material. Three key innovations make this device technically novel and tailored specifically for both field and lab use: (1) The combination of the piezo and pump to generate sub-micron drug-loaded droplets that penetrate cells, skin, and soft tissue to effectively deliver a range of large molecules, proteins, and nucleic acids. (2) Their assembly in a modular manner which enables portability, safe sterilization, and ejection without direct device-surface contact or significant force, allowing for improved safety and ease of use in both research and clinical settings. (3) The integration of a single-use, sterile cartridge that contains a therapeutic formulation and allows easy integration of a large number of molecules. The platform has broad applications across multiple fields, such as delivery of drugs for inflammatory skin diseases, antibiotics for skin infections, and gene delivery for gene therapy and biomedical research. In this chapter, we briefly introduce the Droplette delivery technology, instructions for building your own setup (note that fully built devices are available for purchase from Droplette, Inc), and provide protocols for directly transfecting adherent cell cultures and for direct in vivo transfection using the Droplette system without the need for traditional transfection reagents or methods.


Subject(s)
Nucleic Acids , Administration, Cutaneous , Humans , Indicators and Reagents , Nucleic Acids/genetics , Technology , Transfection
7.
Anal Chem ; 83(23): 9138-45, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22017663

ABSTRACT

Highly sensitive and multiplexed detection of clinically relevant proteins in biologically complex samples is crucial for the advancement of clinical proteomics. In recent years, aptamers have emerged as useful tools for protein analysis due to their specificity and affinity for protein targets as well as their compatibility with particle-based detection systems. In this study, we demonstrate the highly sensitive detection of human α-thrombin on encoded hydrogel microparticles functionalized with an aptamer capture sequence. We use static imaging and microfluidic flow-through analysis techniques to evaluate the detection capabilities of the microgels in sandwich-assay formats that utilize both aptamers and antibodies for the reporting of target-binding events. Buffers and reagent concentrations were optimized to provide maximum reaction efficiency while still maintaining an assay with a simple workflow that can be easily adapted to the multiplexed detection of other clinically relevant proteins. The three-dimensional, nonfouling hydrogel immobilization scaffold used in this work provides three logs of dynamic range, with a limit of detection of 4 pM using a single aptamer capture species and without the need for spacers or signal amplification.


Subject(s)
Aptamers, Nucleotide/chemistry , Hydrogels/chemistry , Thrombin/analysis , Buffers , Humans , Osmolar Concentration
8.
Nat Protoc ; 6(11): 1761-74, 2011 Oct 20.
Article in English | MEDLINE | ID: mdl-22015846

ABSTRACT

This protocol describes the core methodology for the fabrication of bar-coded hydrogel microparticles, the capture and labeling of protein targets and the rapid microfluidic scanning of particles for multiplexed detection. Multifunctional hydrogel particles made from poly(ethylene glycol) serve as a sensitive, nonfouling and bio-inert suspension array for the multiplexed measurement of proteins. Each particle type bears a distinctive graphical code consisting of unpolymerized holes in the wafer structure of the microparticle; this code serves to identify the antibody probe covalently incorporated throughout a separate probe region of the particle. The protocol for protein detection can be separated into three steps: (i) synthesis of particles via microfluidic flow lithography at a rate of 16,000 particles per hour; (ii) a 3-4-h assay in which protein targets are captured and labeled within particles using an antibody sandwich technique; and (iii) a flow scanning procedure to detect bar codes and quantify corresponding targets at rates of 25 particles per s. By using the techniques described, single- or multiple-probe particles can be reproducibly synthesized and used in customizable multiplexed panels to measure protein targets over a three-log range and at concentrations as low as 1 pg ml(-1).


Subject(s)
Electronic Data Processing , Hydrogels , Proteins/chemistry , Animals , Antibodies, Immobilized/immunology , Cattle , Microscopy , Microspheres , Proteins/analysis , Serum Albumin, Bovine
SELECTION OF CITATIONS
SEARCH DETAIL