Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Annu Rev Genet ; 51: 241-263, 2017 11 27.
Article in English | MEDLINE | ID: mdl-28853921

ABSTRACT

Much progress has been made in the identification of specific human gene variants that contribute to enhanced susceptibility or resistance to viral diseases. Herein we review multiple discoveries made with genome-wide or candidate gene approaches that have revealed significant insights into virus-host interactions. Genetic factors that have been identified include genes encoding virus receptors, receptor-modifying enzymes, and a wide variety of innate and adaptive immunity-related proteins. We discuss a range of pathogenic viruses, including influenza virus, respiratory syncytial virus, human immunodeficiency virus, human T cell leukemia virus, human papilloma virus, hepatitis B and C viruses, herpes simplex virus, norovirus, rotavirus, parvovirus, and Epstein-Barr virus. Understanding the genetic underpinnings that affect infectious disease outcomes should allow tailored treatment and prevention approaches in the future.


Subject(s)
Adaptive Immunity , Gene Expression Regulation/immunology , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Immunity, Innate , Virus Diseases/genetics , Cytokines/genetics , Cytokines/immunology , Genome-Wide Association Study , Host-Pathogen Interactions/immunology , Human Genetics , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Receptors, KIR/genetics , Receptors, KIR/immunology , Receptors, Virus/genetics , Receptors, Virus/immunology , Signal Transduction , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/immunology , Virus Diseases/immunology , Virus Diseases/pathology , Virus Diseases/virology
2.
Nucleic Acids Res ; 51(22): 12111-12123, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37933844

ABSTRACT

Human lysyl-tRNA synthetase (LysRS) was previously shown to be re-localized from its normal cytoplasmic location in a multi-aminoacyl-tRNA synthetase complex (MSC) to the nucleus of HIV-1 infected cells. Nuclear localization depends on S207 phosphorylation but the nuclear function of pS207-LysRS in the HIV-1 lifecycle is unknown. Here, we show that HIV-1 replication was severely reduced in a S207A-LysRS knock-in cell line generated by CRISPR/Cas9; this effect was rescued by S207D-LysRS. LysRS phosphorylation up-regulated HIV-1 transcription, as did direct transfection of Ap4A, an upstream transcription factor 2 (USF2) activator that is synthesized by pS207-LysRS. Overexpressing an MSC-derived peptide known to stabilize LysRS MSC binding inhibited HIV-1 replication. Transcription of HIV-1 proviral DNA and other USF2 target genes was reduced in peptide-expressing cells. We propose that nuclear pS207-LysRS generates Ap4A, leading to activation of HIV-1 transcription. Our results suggest a new role for nuclear LysRS in facilitating HIV-1 replication and new avenues for antiviral therapy.


Subject(s)
Cell Nucleus , HIV-1 , Lysine-tRNA Ligase , Humans , DNA/metabolism , HIV-1/physiology , Lysine-tRNA Ligase/metabolism , Peptides/metabolism , Phosphorylation , Proviruses/metabolism , Cell Nucleus/metabolism , Cell Nucleus/virology , Virus Replication
3.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33177202

ABSTRACT

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts HIV-1 replication by limiting the intracellular deoxynucleoside triphosphate (dNTP) pool. SAMHD1 also suppresses the activation of NF-κB in response to viral infections and inflammatory stimuli. However, the mechanisms by which SAMHD1 negatively regulates this pathway remain unclear. Here, we show that SAMHD1-mediated suppression of NF-κB activation is modulated by two key mediators of NF-κB signaling, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and transforming growth factor ß-activated kinase 1 (TAK1). We compared NF-κB activation stimulated by interleukin (IL)-1ß in monocytic THP-1 control and SAMHD1 knockout (KO) cells with and without partial TRAF6 knockdown (KD), or in cells treated with TAK1 inhibitors. Relative to control cells, IL-1ß-treated SAMHD1 KO cells showed increased phosphorylation of the inhibitor of NF-κB (IκBα), an indication of pathway activation, and elevated levels of TNF-α mRNA. Moreover, SAMHD1 KO combined with TRAF6 KD or pharmacological TAK1 inhibition reduced IκBα phosphorylation and TNF-α mRNA to the level of control cells. SAMHD1 KO cells infected with single-cycle HIV-1 showed elevated infection and TNF-α mRNA levels compared to control cells, and the effects were significantly reduced by TRAF6 KD or TAK1 inhibition. We further demonstrated that overexpressed SAMHD1 inhibited TRAF6-stimulated NF-κB reporter activity in HEK293T cells in a dose-dependent manner. SAMHD1 contains a nuclear localization signal (NLS), but an NLS-defective SAMHD1 exhibited a suppressive effect similar to the wild-type protein. Our data suggest that the TRAF6-TAK1 axis contributes to SAMHD1-mediated suppression of NF-κB activation and HIV-1 infection.IMPORTANCE Cells respond to pathogen infection by activating a complex innate immune signaling pathway, which culminates in the activation of transcription factors and secretion of a family of functionally and genetically related cytokines. However, excessive immune activation may cause tissue damage and detrimental effects on the host. Therefore, in order to maintain host homeostasis, the innate immune response is tightly regulated during viral infection. We have reported SAMHD1 as a novel negative regulator of the innate immune response. Here, we provide new insights into SAMHD1-mediated negative regulation of the NF-κB pathway at the TRAF6-TAK1 checkpoint. We show that SAMHD1 inhibits TAK1 activation and TRAF6 signaling in response to proinflammatory stimuli. Interestingly, TRAF6 knockdown in SAMHD1-deficient cells significantly inhibited HIV-1 infection and activation of NF-κB induced by virus infection. Our research reveals a new negative regulatory mechanism by which SAMHD1 participates in the maintenance of cellular homeostasis during HIV-1 infection and inflammation.


Subject(s)
Gene Expression Regulation , HIV Infections/immunology , Immunity, Innate/immunology , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/metabolism , SAM Domain and HD Domain-Containing Protein 1/metabolism , HEK293 Cells , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Humans , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Kinase Kinases/genetics , NF-kappa B/genetics , SAM Domain and HD Domain-Containing Protein 1/genetics , Signal Transduction
4.
J Biol Chem ; 295(6): 1575-1586, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31914403

ABSTRACT

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-ß, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus-infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-ß mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.


Subject(s)
Immunity, Innate , Monocytes/immunology , SAM Domain and HD Domain-Containing Protein 1/immunology , Cell Nucleus/immunology , Humans , Respirovirus Infections/immunology , SAM Domain and HD Domain-Containing Protein 1/analysis , Sendai virus/immunology , THP-1 Cells , U937 Cells
5.
Proc Natl Acad Sci U S A ; 115(16): E3798-E3807, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610295

ABSTRACT

Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.


Subject(s)
Immunity, Innate , Inflammation/immunology , Interferon-alpha/biosynthesis , NF-kappa B/metabolism , SAM Domain and HD Domain-Containing Protein 1/physiology , Virus Diseases/immunology , Animals , Cells, Cultured , Down-Regulation , Gene Expression Regulation/drug effects , Gene Silencing , HEK293 Cells , HIV/physiology , Humans , I-kappa B Kinase/antagonists & inhibitors , Interferon Regulatory Factor-7/antagonists & inhibitors , Interferon-alpha/genetics , Macrophages/immunology , Macrophages/virology , Male , Mice , NF-KappaB Inhibitor alpha/metabolism , Phosphorylation , Protein Processing, Post-Translational , Recombinant Proteins/immunology , Sendai virus/physiology , Signal Transduction/immunology , THP-1 Cells
6.
J Biol Chem ; 293(34): 12992-13005, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29976753

ABSTRACT

The internal N6-methyladenosine (m6A) modification of cellular mRNA regulates post-transcriptional gene expression. The YTH domain family proteins (YTHDF1-3 or Y1-3) bind to m6A-modified cellular mRNAs and modulate their metabolism and processing, thereby affecting cellular protein translation. We previously reported that HIV-1 RNA contains the m6A modification and that Y1-3 proteins inhibit HIV-1 infection by decreasing HIV-1 reverse transcription activity. Here, we investigated the mechanisms of Y1-3-mediated inhibition of HIV-1 infection in target cells and the effect of Y1-3 on viral production levels in virus-producing cells. We found that Y1-3 protein overexpression in HIV-1 target cells decreases viral genomic RNA (gRNA) levels and inhibits both early and late reverse transcription. Purified recombinant Y1-3 proteins preferentially bound to the m6A-modified 5' leader sequence of gRNA compared with its unmodified RNA counterpart, consistent with the strong binding of Y1-3 proteins to HIV-1 gRNA in infected cells. HIV-1 mutants with two altered m6A modification sites in the 5' leader sequence of gRNA exhibited significantly lower infectivity than WT, replication-competent HIV-1, confirming that these sites alter viral infection. HIV-1 produced from cells in which endogenous Y1, Y3, or Y1-3 proteins were knocked down singly or together had increased viral infectivity compared with HIV-1 produced in control cells. Interestingly, we found that Y1-3 proteins and HIV-1 Gag protein formed a complex with RNA in HIV-1-producing cells. Overall, these results indicate that Y1-3 proteins inhibit HIV-1 infection and provide new insights into the mechanisms by which the m6A modification of HIV-1 RNA affects viral replication.


Subject(s)
Adenosine/analogs & derivatives , Gene Products, gag/metabolism , HIV Infections/virology , HIV-1/growth & development , RNA, Viral/metabolism , RNA-Binding Proteins/metabolism , Virion/growth & development , Adenosine/metabolism , HIV Infections/metabolism , HIV-1/metabolism , HeLa Cells , Humans , Protein Binding , Virion/metabolism , Virus Internalization
7.
J Virol ; 92(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29321329

ABSTRACT

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) regulates intracellular deoxynucleoside triphosphate (dNTP) levels and functions as a retroviral restriction factor through its dNTP triphosphohydrolase (dNTPase) activity. Human SAMHD1 interacts with cell cycle regulatory proteins cyclin A2, cyclin-dependent kinase 1 (CDK1), and CDK2. This interaction mediates phosphorylation of SAMHD1 at threonine 592 (T592), which negatively regulates HIV-1 restriction. We previously reported that the interaction is mediated, at least in part, through a cyclin-binding motif (RXL, amino acids [aa] 451 to 453). To understand the role of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of RXL mutants and the effect on HIV-1 restriction. We found that the RXL mutation (R451A and L453A, termed RL/AA) disrupted SAMHD1 tetramer formation and abolished its dNTPase activity in vitro and in cells. Compared to wild-type (WT) SAMHD1, the RL/AA mutant failed to restrict HIV-1 infection and had reduced binding to cyclin A2. WT SAMHD1 and RL/AA mutant proteins were degraded by Vpx from HIV-2 but were not spontaneously ubiquitinated in the absence of Vpx. Analysis of proteasomal and autophagy degradation revealed that WT and RL/AA SAMHD1 protein levels were enhanced only when both pathways of degradation were simultaneously inhibited. Our results demonstrate that the RXL motif of human SAMHD1 is required for its HIV-1 restriction, tetramer formation, dNTPase activity, and efficient phosphorylation at T592. These findings identify a new functional domain of SAMHD1 important for its structural integrity, enzyme activity, phosphorylation, and HIV-1 restriction.IMPORTANCE SAMHD1 is the first mammalian dNTPase identified as a restriction factor that inhibits HIV-1 replication by decreasing the intracellular dNTP pool in nondividing cells, although the critical mechanisms regulating SAMHD1 function remain unclear. We previously reported that mutations of a cyclin-binding RXL motif in human SAMHD1 significantly affect protein expression levels, half-life, nuclear localization, and phosphorylation, suggesting an important role of this motif in modulating SAMHD1 functions in cells. To further understand the significance and mechanisms of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of the RXL motif mutation and its effect on HIV-1 restriction. Our results indicate that the RXL motif is critical for tetramer formation, dNTPase activity, and HIV-1 restriction. These findings help us understand SAMHD1 interactions with other host proteins and the mechanisms regulating SAMHD1 structure and functions in cells.


Subject(s)
HIV Infections , HIV-1 , Mutation, Missense , Protein Multimerization , SAM Domain and HD Domain-Containing Protein 1 , Amino Acid Motifs , Amino Acid Substitution , HEK293 Cells , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/pathology , HIV-1/chemistry , HIV-1/genetics , HIV-1/metabolism , Humans , Phosphorylation , Protein Domains , SAM Domain and HD Domain-Containing Protein 1/chemistry , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/metabolism , Structure-Activity Relationship , THP-1 Cells , U937 Cells
8.
J Virol ; 92(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29793958

ABSTRACT

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in nondividing cells by degrading intracellular deoxynucleoside triphosphates (dNTPs). SAMHD1 is highly expressed in resting CD4+ T cells, which are important for the HIV-1 reservoir and viral latency; however, whether SAMHD1 affects HIV-1 latency is unknown. Recombinant SAMHD1 binds HIV-1 DNA or RNA fragments in vitro, but the function of this binding remains unclear. Here we investigate the effect of SAMHD1 on HIV-1 gene expression and reactivation of viral latency. We found that endogenous SAMHD1 impaired HIV-1 long terminal repeat (LTR) activity in monocytic THP-1 cells and HIV-1 reactivation in latently infected primary CD4+ T cells. Overexpression of wild-type (WT) SAMHD1 suppressed HIV-1 LTR-driven gene expression at a transcriptional level. Tat coexpression abrogated SAMHD1-mediated suppression of HIV-1 LTR-driven luciferase expression. SAMHD1 overexpression also suppressed the LTR activity of human T-cell leukemia virus type 1 (HTLV-1), but not that of murine leukemia virus (MLV), suggesting specific suppression of retroviral LTR-driven gene expression. WT SAMHD1 bound to proviral DNA and impaired reactivation of HIV-1 gene expression in latently infected J-Lat cells. In contrast, a nonphosphorylated mutant (T592A) and a dNTP triphosphohydrolase (dNTPase) inactive mutant (H206D R207N [HD/RN]) of SAMHD1 failed to efficiently suppress HIV-1 LTR-driven gene expression and reactivation of latent virus. Purified recombinant WT SAMHD1, but not the T592A and HD/RN mutants, bound to fragments of the HIV-1 LTR in vitro These findings suggest that SAMHD1-mediated suppression of HIV-1 LTR-driven gene expression potentially regulates viral latency in CD4+ T cells.IMPORTANCE A critical barrier to developing a cure for HIV-1 infection is the long-lived viral reservoir that exists in resting CD4+ T cells, the main targets of HIV-1. The viral reservoir is maintained through a variety of mechanisms, including regulation of the HIV-1 LTR promoter. The host protein SAMHD1 restricts HIV-1 replication in nondividing cells, but its role in HIV-1 latency remains unknown. Here we report a new function of SAMHD1 in regulating HIV-1 latency. We found that SAMHD1 suppressed HIV-1 LTR promoter-driven gene expression and reactivation of viral latency in cell lines and primary CD4+ T cells. Furthermore, SAMHD1 bound to the HIV-1 LTR in vitro and in a latently infected CD4+ T-cell line, suggesting that the binding may negatively modulate reactivation of HIV-1 latency. Our findings indicate a novel role for SAMHD1 in regulating HIV-1 latency, which enhances our understanding of the mechanisms regulating proviral gene expression in CD4+ T cells.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Gene Expression Regulation, Viral/physiology , HIV Long Terminal Repeat/physiology , HIV-1/physiology , SAM Domain and HD Domain-Containing Protein 1/metabolism , Transcription, Genetic/physiology , Virus Latency/physiology , Amino Acid Substitution , CD4-Positive T-Lymphocytes/virology , HEK293 Cells , Humans , Jurkat Cells , Mutation, Missense , SAM Domain and HD Domain-Containing Protein 1/genetics , THP-1 Cells
9.
J Virol ; 91(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28814526

ABSTRACT

A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNALys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNALys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication.IMPORTANCE Human tRNALys3, the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNALys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNALys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNALys Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , HIV Infections/virology , HIV-1/physiology , Virus Assembly , Virus Replication , Cytoplasm/metabolism , HEK293 Cells , HIV Infections/metabolism , Humans , Lysine-tRNA Ligase/metabolism , RNA, Transfer, Lys/metabolism
10.
J Biol Chem ; 291(51): 26332-26342, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27815502

ABSTRACT

SAMHD1 (sterile α motif and HD domain-containing protein 1) is a mammalian protein that regulates intracellular dNTP levels through its hydrolysis of dNTPs. SAMHD1 functions as an important retroviral restriction factor through a mechanism relying on its dNTPase activity. We and others have reported that human SAMHD1 interacts with the cell cycle regulatory proteins cyclin A, CDK1, and CDK2, which mediates phosphorylation of SAMHD1 at threonine 592, a post-translational modification that has been implicated in abrogating SAMHD1 restriction function and ability to form stable tetramers. Utilizing co-immunoprecipitation and co-localization approaches, we show that endogenous SAMHD1 is able to interact with the cyclin A-CDK1-CDK2 complexin monocytic THP-1 cells and primary monocyte-derived macrophages. Sequence analysis of SAMHD1 identifies a putative cyclin-binding motif found in many cyclin-CDK complex substrates. Using a mutagenesis-based approach, we demonstrate that the conserved residues in the putative cyclin-binding motif are important for protein expression, protein half-life, and optimal phosphorylation of SAMHD1 at Thr592 Furthermore, we observed that SAMHD1 mutants of the cyclin-binding motif mislocalized to a nuclear compartment and had reduced ability to interact with cyclin A-CDK complexes and to form the tetramer. These findings help define the mechanisms by which SAMHD1 is phosphorylated and suggest the contribution of cyclin binding to SAMHD1 expression and stability in dividing cells.


Subject(s)
Cell Division/physiology , Macrophages/metabolism , Monocytes/metabolism , Monomeric GTP-Binding Proteins/biosynthesis , Protein Processing, Post-Translational/physiology , CDC2 Protein Kinase , Cell Line, Tumor , Cyclin A/genetics , Cyclin A/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Humans , Macrophages/cytology , Monocytes/cytology , Monomeric GTP-Binding Proteins/genetics , Phosphorylation/physiology , SAM Domain and HD Domain-Containing Protein 1
11.
J Virol ; 88(10): 5834-44, 2014 May.
Article in English | MEDLINE | ID: mdl-24623419

ABSTRACT

UNLABELLED: Human and mouse SAMHD1 proteins block human immunodeficiency virus type 1 (HIV-1) infection in noncycling human monocytic cells by reducing the intracellular deoxynucleoside triphosphate (dNTP) concentrations. Phosphorylation of human SAMHD1 at threonine 592 (T592) by cyclin-dependent kinase 1 (CDK1) and cyclin A2 impairs its HIV-1 restriction activity, but not the dNTP hydrolase activity, suggesting that dNTP depletion is not the sole mechanism of SAMHD1-mediated HIV-1 restriction. Using coimmunoprecipitation and mass spectrometry, we identified and validated two additional host proteins interacting with human SAMHD1, namely, cyclin-dependent kinase 2 (CDK2) and S-phase kinase-associated protein 2 (SKP2). We observed that mouse SAMHD1 specifically interacted with cyclin A2, cyclin B1, CDK1, and CDK2. Given the role of these SAMHD1-interacting proteins in cell cycle progression, we investigated the regulation of these host proteins by monocyte differentiation and activation of CD4+ T cells and examined their effect on the phosphorylation of human SAMHD1 at T592. Our results indicate that primary monocyte differentiation and CD4+ T-cell activation regulate the expression of these SAMHD1-interacting proteins. Furthermore, our results suggest that, in addition to CDK1 and cyclin A2, CDK2 phosphorylates T592 of human SAMHD1 and thereby regulates its HIV-1 restriction function. IMPORTANCE: SAMHD1 is the first dNTP triphosphohydrolase found in mammalian cells. Human and mouse SAMHD1 proteins block HIV-1 infection in noncycling cells. Previous studies suggested that phosphorylation of human SAMHD1 at threonine 592 by CDK1 and cyclin A2 negatively regulates its HIV-1 restriction activity. However, it is unclear whether human SAMHD1 interacts with other host proteins in the cyclin A2 and CDK1 complex and whether mouse SAMHD1 shares similar cellular interacting partners. Here, we identify five cell cycle-related host proteins that interact with human and mouse SAMHD1, including three previously unknown cellular proteins (CDK2, cyclin B1, and SKP2). Our results demonstrate that several SAMHD1-interacting cellular proteins regulate phosphorylation of SAMHD1 and play an important role in HIV-1 restriction function. Our findings help define the role of these cellular interacting partners of SAMHD1 that regulate its HIV-1 restriction function.


Subject(s)
Cyclin-Dependent Kinase 2/metabolism , HIV-1/immunology , HIV-1/physiology , Host-Pathogen Interactions , Monomeric GTP-Binding Proteins/metabolism , S-Phase Kinase-Associated Proteins/metabolism , Animals , Cells, Cultured , Humans , Immunoprecipitation , Mass Spectrometry , Mice , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , SAM Domain and HD Domain-Containing Protein 1 , Virus Replication
12.
Retrovirology ; 9: 105, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23231760

ABSTRACT

BACKGROUND: SAMHD1 is an HIV-1 restriction factor in non-dividing monocytes, dendritic cells (DCs), macrophages, and resting CD4+ T-cells. Acting as a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, SAMHD1 hydrolyzes dNTPs and restricts HIV-1 infection in macrophages and resting CD4+ T-cells by decreasing the intracellular dNTP pool. However, the intracellular dNTP pool in DCs and its regulation by SAMHD1 remain unclear. SAMHD1 has been reported as a type I interferon (IFN)-inducible protein, but whether type I IFNs upregulate SAMHD1 expression in primary DCs and CD4+ T-lymphocytes is unknown. RESULTS: Here, we report that SAMHD1 significantly blocked single-cycle and replication-competent HIV-1 infection of DCs by decreasing the intracellular dNTP pool and thereby limiting the accumulation of HIV-1 late reverse transcription products. Type I IFN treatment did not upregulate endogenous SAMHD1 expression in primary DCs or CD4+ T-lymphocytes, but did in HEK 293T and HeLa cell lines. When SAMHD1 was over-expressed in these two cell lines to achieve higher levels than that in DCs, no HIV-1 restriction was observed despite partially reducing the intracellular dNTP pool. CONCLUSIONS: Our results suggest that SAMHD1-mediated reduction of the intracellular dNTP pool in DCs is a common mechanism of HIV-1 restriction in myeloid cells. Endogenous expression of SAMHD1 in primary DCs or CD4+ T-lymphocytes is not upregulated by type I IFNs.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Dendritic Cells/metabolism , Dendritic Cells/virology , HIV-1/physiology , Monomeric GTP-Binding Proteins/metabolism , CD4-Positive T-Lymphocytes/drug effects , Dendritic Cells/drug effects , Gene Expression Regulation/drug effects , HEK293 Cells , HeLa Cells , Humans , Interferons/pharmacology , Monomeric GTP-Binding Proteins/genetics , Proteolysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcription , SAM Domain and HD Domain-Containing Protein 1 , Viral Regulatory and Accessory Proteins/metabolism , Virus Replication
13.
Retrovirology ; 8: 55, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21740548

ABSTRACT

Human myeloid-lineage cells are refractory to HIV-1 infection. The Vpx proteins from HIV-2 and sooty mangabey SIV render these cells permissive to HIV-1 infection through proteasomal degradation of a putative restriction factor. Two recent studies discovered the cellular protein SAMHD1 to be this restriction factor, demonstrating that Vpx induces proteasomal degradation of SAMHD1 and enhances HIV-1 infection in myeloid-lineage cells. SAMHD1 functions as a myeloid-cell-specific HIV-1 restriction factor by inhibiting viral DNA synthesis. Here we discuss the implications of these findings in delineating the mechanisms of HIV-1 restriction in myeloid-lineage cells and the potential role of Vpx in lentiviral pathogenesis.


Subject(s)
HIV-1/growth & development , HIV-1/immunology , Monomeric GTP-Binding Proteins/immunology , Monomeric GTP-Binding Proteins/metabolism , Myeloid Cells/immunology , Myeloid Cells/virology , Humans , Models, Biological , SAM Domain and HD Domain-Containing Protein 1
14.
Trends Microbiol ; 27(3): 254-267, 2019 03.
Article in English | MEDLINE | ID: mdl-30336972

ABSTRACT

SAMHD1 is a host triphosphohydrolase that degrades intracellular deoxynucleoside triphosphates (dNTPs) to a lower level that restricts viral DNA synthesis, and thus prevents replication of diverse viruses in nondividing cells. Recent progress indicates that SAMHD1 negatively regulates antiviral innate immune responses and inflammation through interacting with various key proteins in immune signaling and DNA damage-repair pathways. SAMHD1 can also modulate antibody production in adaptive immune responses. In this review, we summarize how SAMHD1 regulates antiviral immune responses through distinct mechanisms, and discuss the implications of these new functions of SAMHD1. Furthermore, we propose important new questions and future directions that can advance functional and mechanistic studies of SAMHD1-mediated immune regulation during viral infections.


Subject(s)
Gene Expression Regulation/immunology , HIV Infections/immunology , Immunity, Innate , SAM Domain and HD Domain-Containing Protein 1/genetics , SAM Domain and HD Domain-Containing Protein 1/immunology , Animals , Humans , Mice , Signal Transduction/immunology , Virus Replication/immunology
15.
Front Immunol ; 8: 1541, 2017.
Article in English | MEDLINE | ID: mdl-29176984

ABSTRACT

The innate immune response constitutes the first cellular line of defense against initial HIV-1 infection. Immune cells sense invading virus and trigger signaling cascades that induce antiviral defenses to control or eliminate infection. Professional antigen-presenting cells located in mucosal tissues, including dendritic cells and macrophages, are critical for recognizing HIV-1 at the site of initial exposure. These cells are less permissive to HIV-1 infection compared to activated CD4+ T-cells, which is mainly due to host restriction factors that serve an immediate role in controlling the establishment or spread of viral infection. However, HIV-1 can exploit innate immune cells and their cellular factors to avoid detection and clearance by the host immune system. Sterile alpha motif and HD-domain containing protein 1 (SAMHD1) is the mammalian deoxynucleoside triphosphate triphosphohydrolase responsible for regulating intracellular dNTP pools and restricting the replication of HIV-1 in non-dividing myeloid cells and quiescent CD4+ T-cells. Here, we review and analyze the latest literature on the antiviral function of SAMHD1, including the mechanism of HIV-1 restriction and the ability of SAMHD1 to regulate the innate immune response to viral infection. We also provide an overview of the dynamic interplay between HIV-1, SAMHD1, and the cell-intrinsic antiviral response to elucidate how SAMHD1 modulates HIV-1 infection in non-dividing immune cells. A more complete understanding of SAMHD1's role in the innate immune response to HIV-1 infection may help develop stratagems to enhance its antiviral effects and to more efficiently block HIV-1 replication and avoid the pathogenic result of viral infection.

16.
Virology ; 487: 273-84, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26580513

ABSTRACT

Human SAMHD1 (hSAMHD1) restricts HIV-1 infection in non-dividing cells by depleting intracellular dNTPs to limit viral reverse transcription. Phosphorylation of hSAMHD1 at threonine (T) 592 by cyclin-dependent kinase (CDK) 1 and CDK2 negatively regulates HIV-1 restriction. Mouse SAMHD1 (mSAMHD1) restricts HIV-1 infection in non-dividing cells, but whether its phosphorylation regulates retroviral restriction is unknown. Here we identified six phospho-sites of mSAMHD1, including T634 that is homologous to T592 of hSAMHD1 and phosphorylated by CDK1 and CDK2. We found that wild-type (WT) mSAMHD1 and a phospho-ablative mutant, but not a phospho-mimetic mutant, restricted HIV-1 infection in differentiated U937 cells. Murine leukemia virus (MLV) infection of dividing NIH3T3 cells was modestly restricted by mSAMHD1 WT and phospho-mutants, but not by a dNTPase-defective mutant. Our results suggest that phosphorylation of mSAMHD1 at T634 by CDK1/2 negatively regulates its HIV-1 restriction in differentiated cells, but does not affect its MLV restriction in dividing cells.


Subject(s)
Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinases/genetics , HIV-1/pathogenicity , Leukemia Virus, Murine/pathogenicity , Monomeric GTP-Binding Proteins/metabolism , 3T3 Cells , Animals , CDC2 Protein Kinase , Cell Line , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , HEK293 Cells , HIV Infections/pathology , HIV-1/genetics , Humans , Leukemia Virus, Murine/genetics , Leukemia, Experimental/pathology , Mice , Phosphorylation , RNA Interference , RNA, Small Interfering , Retroviridae Infections/pathology , SAM Domain and HD Domain-Containing Protein 1 , Transfection , Tumor Virus Infections/pathology , U937 Cells , Virus Replication/genetics
17.
Virology ; 495: 92-100, 2016 08.
Article in English | MEDLINE | ID: mdl-27183329

ABSTRACT

SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G1/G0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection.


Subject(s)
HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Monocytes/metabolism , Monocytes/virology , Monomeric GTP-Binding Proteins/metabolism , Apoptosis/genetics , Biomarkers , Caspase 3/metabolism , Caspase 7/metabolism , Cell Cycle/genetics , Cell Line , Cell Proliferation , Gene Knockout Techniques , Gene Silencing , HIV Infections/genetics , Humans , Monomeric GTP-Binding Proteins/genetics , SAM Domain and HD Domain-Containing Protein 1
18.
AIDS Res Hum Retroviruses ; 31(8): 806-16, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25769457

ABSTRACT

HIV-1 interacts with numerous cellular proteins during viral replication. Identifying such host proteins and characterizing their roles in HIV-1 infection can deepen our understanding of the dynamic interplay between host and pathogen. We previously identified non-POU domain-containing octamer-binding protein (NonO or p54nrb) as one of host factors associated with catalytically active preintegration complexes (PIC) of HIV-1 in infected CD4(+) T cells. NonO is involved in nuclear processes including transcriptional regulation and RNA splicing. Although NonO has been identified as an HIV-1 interactant in several recent studies, its role in HIV-1 replication has not been characterized. We investigated the effect of NonO on the HIV-1 life cycle in CD4(+) T cell lines and primary CD4(+) T cells using single-cycle and replication-competent HIV-1 infection assays. We observed that short hairpin RNA (shRNA)-mediated stable NonO knockdown in a CD4(+) Jurkat T cell line and primary CD4(+) T cells did not affect cell viability or proliferation, but enhanced HIV-1 infection. The enhancement of HIV-1 infection in Jurkat T cells correlated with increased viral reverse transcription and gene expression. Knockdown of NonO expression in Jurkat T cells modestly enhanced HIV-1 gag mRNA expression and Gag protein synthesis, suggesting that viral gene expression and RNA regulation are the predominantly affected events causing enhanced HIV-1 replication in NonO knockdown (KD) cells. Furthermore, overexpression of NonO in Jurkat T cells reduced HIV-1 single-cycle infection by 41% compared to control cells. Our data suggest that NonO negatively regulates HIV-1 infection in CD4(+) T cells, albeit it has modest effects on early and late stages of the viral life cycle, highlighting the importance of host proteins associated with HIV-1 PIC in regulating viral replication.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , HIV-1/immunology , HIV-1/physiology , Host-Pathogen Interactions , Nuclear Matrix-Associated Proteins/metabolism , Octamer Transcription Factors/metabolism , RNA-Binding Proteins/metabolism , Virus Replication , Cells, Cultured , DNA-Binding Proteins , Gene Knockdown Techniques , Humans , Nuclear Matrix-Associated Proteins/antagonists & inhibitors , Octamer Transcription Factors/antagonists & inhibitors , RNA-Binding Proteins/antagonists & inhibitors
19.
PLoS One ; 7(3): e34521, 2012.
Article in English | MEDLINE | ID: mdl-22479639

ABSTRACT

HIV-1 Nef enhances dendritic cell (DC)-mediated viral transmission to CD4(+) T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+) T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+) T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+) T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+) T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+) T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+) T cells and in the activation and proliferation of resting CD4(+) T cells, which likely contribute to viral pathogenesis.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Dendritic Cells/virology , HIV Infections/immunology , HIV-1/immunology , Lymphocyte Activation , nef Gene Products, Human Immunodeficiency Virus/immunology , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Dendritic Cells/immunology , HIV Infections/virology , Humans , T-Lymphocytes/immunology , T-Lymphocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL