Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Antimicrob Agents Chemother ; 68(4): e0138823, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38376187

ABSTRACT

Phage-antibiotic combinations (PAC) offer a potential solution for treating refractory daptomycin-nonsusceptible (DNS) methicillin-resistant Staphylococcus aureus (MRSA) infections. We examined PAC activity against two well-characterized DNS MRSA strains (C4 and C37) in vitro and ex vivo. PACs comprising daptomycin (DAP) ± ceftaroline (CPT) and a two-phage cocktail (Intesti13 + Sb-1) were evaluated for phage-antibiotic synergy (PAS) against high MRSA inoculum (109 CFU/mL) using (i) modified checkerboards (CB), (ii) 24-h time-kill assays (TKA), and (iii) 168-h ex vivo simulated endocardial vegetation (SEV) models. PAS was defined as a fractional inhibitory concentration ≤0.5 in CB minimum inhibitory concentration (MIC) or a ≥2 log10 CFU/mL reduction compared to the next best regimen in time-kill assays and SEV models. Significant differences between regimens were assessed by analysis of variance with Tukey's post hoc modification (α = 0.05). CB assays revealed PAS with Intesti13 + Sb-1 + DAP ± CPT. In 24-h time-kill assays against C4, Intesti13 + Sb-1 + DAP ± CPT demonstrated synergistic activity (-Δ7.21 and -Δ7.39 log10 CFU/mL, respectively) (P < 0.05 each). Against C37, Intesti13 + Sb-1 + CPT ± DAP was equally effective (-Δ7.14 log10 CFU/mL each) and not significantly different from DAP + Intesti13 + Sb-1 (-Δ6.65 log10 CFU/mL). In 168-h SEV models against C4 and C37, DAP ± CPT + the phage cocktail exerted synergistic activities, significantly reducing bio-burdens to the detection limit [2 log10 CFU/g (-Δ7.07 and -Δ7.11 log10 CFU/g, respectively)] (P < 0.001). At 168 h, both models maintained stable MICs, and no treatment-emergent phage resistance occurred with DAP or DAP + CPT regimens. The two-phage cocktail demonstrated synergistic activity against two DNS MRSA isolates in combination with DAP + CPT in vitro and ex vivo. Further in vivo PAC investigations are needed.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Daptomycin/pharmacology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftaroline , Microbial Sensitivity Tests
2.
Antimicrob Agents Chemother ; 67(11): e0072823, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37877697

ABSTRACT

Pseudomonas aeruginosa-associated infective endocarditis represents difficult-to-treat, deep-seated infections. Phage-antibiotic combinations have shown to eradicate multi-drug resistant (MDR) P. aeruginosa, limit the development of phage resistance, and restore antibiotic sensitivity. The objective of this study was to evaluate the activity of phage-ciprofloxacin (CIP) combinations in 4-day ex vivo simulated endocardial vegetation (SEV) models against drug-resistant P. aeruginosa isolates. Two P. aeruginosa isolates, extensively drug-resistant AR351 and MDR I0003-1, were selected for their drug resistance and sensitivity to phage. Three phages [LL-5504721-AH (LL), E2005-C (EC), and 109] and CIP were evaluated alone and in combination for their activity and influence on drug and phage resistance using 24-h time-kill analysis. The three-phage cocktail (q24h) in combination with CIP (400 mg q12h) was then tested in dynamic 4-day ex vivo SEV models, with reduction of log10 CFU/mL compared using ANOVA with Bonferroni analysis. Compared to other combinations, CIP-LL-EC-109 demonstrated synergistic and bactericidal activity from starting CFU/g against AR351 and I0003-1 (-Δ5.65 and 6.60 log10 CFU/g, respectively; P < 0.001). Additionally, CIP-LL-EC-109 mitigated phage resistance, while all other therapies had a high degree of resistance to >1 phages, and all phage-containing regimens prevented CIP mean inhibitory concentration increases compared to CIP alone for both AR351 and I0003-1 at 96 h.


Subject(s)
Bacteriophages , Pseudomonas Infections , Humans , Ciprofloxacin/pharmacology , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/therapy
3.
Antimicrob Agents Chemother ; 67(6): e0131722, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37222591

ABSTRACT

Biofilm-associated infections lead to substantial morbidity. Omadacycline (OMC) is a novel aminomethylcycline with potent in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis, but data surrounding its use in biofilm-associated infections are lacking. We investigated the activity of OMC alone and in combination with rifampin (RIF) against 20 clinical strains of staphylococci in multiple in vitro biofilm analyses, including an in vitro pharmacokinetic/pharmacodynamic (PK/PD) CDC biofilm reactor (CBR) model (simulating human exposures). The observed MICs for OMC demonstrated potent activity against the evaluated strains (0.125 to 1 mg/L), with an increase of MICs generally observed in the presence of biofilm (0.25 to >64 mg/L). Furthermore, RIF was shown to reduce OMC biofilm MICs (bMICs) in 90% of strains, and OMC plus RIF combination in biofilm time-kill analyses (TKAs) exhibited synergistic activity in most of the strains. Within the PK/PD CBR model, OMC monotherapy primarily displayed bacteriostatic activity, while RIF monotherapy generally exhibited initial bacterial eradication, followed by rapid regrowth likely due to the emergence of RIF resistance (RIF bMIC, >64 mg/L). However, the combination of OMC plus RIF produced rapid and sustained bactericidal activity in nearly all the strains (3.76 to 4.03 log10 CFU/cm2 reductions from starting inoculum in strains in which bactericidal activity was reached). Furthermore, OMC was shown to prevent the emergence of RIF resistance. Our data provide preliminary evidence that OMC in combination with RIF could be a viable option for biofilm-associated infections with S. aureus and S. epidermidis. Further research involving OMC in biofilm-associated infections is warranted.


Subject(s)
Rifampin , Staphylococcal Infections , Humans , Rifampin/pharmacology , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Staphylococcus epidermidis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Biofilms , Microbial Sensitivity Tests
4.
Antimicrob Agents Chemother ; 67(11): e0057823, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37855639

ABSTRACT

Biofilm-producing Pseudomonas aeruginosa infections pose a severe threat to public health and are responsible for high morbidity and mortality. Phage-antibiotic combinations (PACs) are a promising strategy for combatting multidrug-resistant (MDR), extensively drug-resistant (XDR), and difficult-to-treat P. aeruginosa infections. Ten MDR/XDR P. aeruginosa strains and five P. aeruginosa-specific phages were genetically characterized and evaluated based upon their antibiotic susceptibilities and phage sensitivities. Two selected strains, AR351 (XDR) and I0003-1 (MDR), were treated singly and in combination with either a broad-spectrum or narrow-spectrum phage, phage EM-T3762627-2_AH (EM), or 14207, respectively, and bactericidal antibiotics of five classes in biofilm time-kill analyses. Synergy and/or bactericidal activity was demonstrated with all PACs against one or both drug-resistant P. aeruginosa strains (average reduction: -Δ3.32 log10 CFU/cm2). Slightly improved ciprofloxacin susceptibility was observed in both strains after exposure to phages (EM and 14207) in combination with ciprofloxacin and colistin. Based on phage cocktail optimization with four phages (EM, 14207, E20050-C (EC), and 109), we identified several effective phage-antibiotic cocktails for further analysis in a 4-day pharmacokinetic/pharmacodynamic in vitro biofilm model. Three-phage cocktail, EM + EC + 109, in combination with ciprofloxacin demonstrated the greatest biofilm reduction against AR351 (-Δ4.70 log10 CFU/cm2 from baseline). Of remarkable interest, the addition of phage 109 prevented phage resistance development to EM and EC in the biofilm model. PACs can demonstrate synergy and offer enhanced eradication of biofilm against drug-resistant P. aeruginosa while preventing the emergence of resistance.


Subject(s)
Bacteriophages , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Pseudomonas Infections/drug therapy , Biofilms
5.
Antimicrob Agents Chemother ; 66(1): e0162321, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34723631

ABSTRACT

Enterococcus faecium is a significant multidrug-resistant pathogen. Bacteriophage cocktails are being proposed to complement antibiotic therapy. After a screen of 8 E. faecium strains against 4 phages, 2 phages (113 and 9184) with the broadest host ranges were chosen for further experiments. Transmission electron microscopy, whole-genome sequencing, comparative genome analyses, and time-kill analyses were performed. Daptomycin (DAP) plus the phage cocktail (113 [myophage] and 9184 [siphopage]) showed bactericidal activity in most regimens, while DAP addition prevented phage 9184 resistance against daptomycin-nonsusceptible E. faecium.


Subject(s)
Bacteriophages , Daptomycin , Enterococcus faecium , Anti-Bacterial Agents/pharmacology , Bacteriophages/genetics , Daptomycin/pharmacology , Enterococcus faecium/genetics , Microbial Sensitivity Tests
6.
Antimicrob Agents Chemother ; 65(9): e0264620, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34125590

ABSTRACT

Cefiderocol (CFDC), a novel siderophore cephalosporin, demonstrates strong activity against multidrug-resistant (MDR) Acinetobacter baumannii. Limited studies have evaluated CFDC alone and in combination with other Gram-negative antibiotics against MDR A. baumannii isolates. Susceptibility testing revealed lower CFDC MIC values (87% of MICs ≤ 4mg/liter) than the comparator Gram-negative agents. Six isolates, with elevated CFDC MICs (16 to 32 mg/liter) were selected for further experiments. Time-kill analyses presented with synergistic activity and beta-lactamase inhibitors increased CFDC susceptibility in each of the isolates.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Cefiderocol
7.
Antimicrob Agents Chemother ; 65(11): e0012821, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34398668

ABSTRACT

Exebacase is a lysin (cell wall hydrolase) with direct lytic activity against Staphylococcus aureus including methicillin-resistant S. aureus (MRSA). Time-kill analysis experiments illustrated bactericidal activity of exebacase-daptomycin against MRSA strains MW2 and 494. Furthermore, exebacase in addition to daptomycin (10, 6, and 4 mg/kg/day) in a two-compartment ex vivo pharmacokinetic/pharmacodynamic simulated endocardial vegetation model with humanized doses resulted in reductions of 6.01, 4.99, and 2.81 log10 CFU/g (from initial inoculum) against MRSA strain MW2.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Daptomycin/pharmacology , Endopeptidases , Microbial Sensitivity Tests
8.
J Infect Dis ; 222(9): 1531-1539, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32514561

ABSTRACT

BACKGROUND: The combination of daptomycin (DAP) plus ampicillin (AMP), ertapenem (ERT), or ceftaroline has been demonstrated to be efficacious against a DAP-tolerant Enterococcus faecium strain (HOU503). However, the mechanism for the efficacy of these combinations against DAP-resistant (DAP-R) E. faecium strains is unknown. METHODS: We investigated the efficacy of DAP in combination with AMP, ERT, ceftaroline, ceftriaxone, or amoxicillin against DAP-R E. faecium R497 using established in vitro and in vivo models. We evaluated pbp expression, levels of penicillin-binding protein (PBP) 5 (PBP5) and ß-lactam binding affinity in HOU503 versus R497. RESULTS: DAP plus AMP was the only efficacious regimen against DAP-R R497 and prevented emergence of resistance. DAP at 8, 6, and 4 mg/kg in combination with AMP was efficacious but showed delayed killing compared with 10 mg/kg. PBP5 of HOU503 exhibited amino acid substitutions in the penicillin-binding domain relative to R497. No difference in pbp mRNA or PBP5 levels was detected between HOU503 and R497. labeling of PBPs with Bocillin FL, a fluorescent penicillin derivative, showed increased ß-lactam binding affinity of PBP5 of HOU503 compared with that of R497. CONCLUSIONS: Only DAP (10 mg/kg) plus AMP or amoxicillin was efficacious against a DAP-R E. faecium strain, and pbp5 alleles may be important contributors to efficacy of DAP plus ß-lactam therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Enterococcus faecium/drug effects , beta-Lactams/pharmacology , Ampicillin/administration & dosage , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Cephalosporins/administration & dosage , Cephalosporins/therapeutic use , Daptomycin/administration & dosage , Disease Models, Animal , Drug Resistance, Bacterial , Drug Therapy, Combination , Endocarditis, Bacterial/drug therapy , Enterococcus faecium/genetics , Ertapenem/administration & dosage , Ertapenem/pharmacology , Gram-Positive Bacterial Infections/drug therapy , Microbial Sensitivity Tests , Rats , Sequence Alignment , Transcriptome , beta-Lactams/administration & dosage , Ceftaroline
9.
Article in English | MEDLINE | ID: mdl-33077648

ABSTRACT

This study aimed to test the efficacy of bacteriophage-antibiotic combinations (BACs) in vitro in 24-h time-kill settings and in ex vivo simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic models for 96 h. BACs prevented the development of bacteriophage resistance, while some bacteriophage resistance emerged in bacteriophage-alone treatments. In addition, BACs resulted in an enhancement of bacterial eradication in SEV models. Our findings support the potential activity of BAC therapy for combating serious methicillin-resistant Staphylococcus aureus (MRSA) infections.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy
10.
Article in English | MEDLINE | ID: mdl-32393490

ABSTRACT

Comparative time-kill experiments with Staphylococcus aureus bacteriophage (phage) Sb-1 alone and phage-antibiotic combinations (PACs) against two methicillin-resistant S. aureus (MRSA) strains have shown synergy with both daptomycin-phage and vancomycin-phage combinations. PACs prevented development of phage resistance and demonstrated bactericidal activity for all triple combinations. In addition, the extracellular membrane vesicle (MV) formation and the potential impact of phage on MV suppression were examined. Our results demonstrate the potential of PAC for combating MRSA infections.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Humans , Methicillin Resistance , Microbial Sensitivity Tests , Phenotype , Staphylococcal Infections/drug therapy , Staphylococcus aureus
11.
Article in English | MEDLINE | ID: mdl-32571816

ABSTRACT

Concerns regarding increased prevalence of daptomycin (DAP)-resistant strains necessitate novel therapies for Enterococcus faecium infections. Obligately lytic bacteriophages are viruses that target, infect, and kill bacterial cells. Limited studies have evaluated phage-antibiotic combinations against E. faecium After an initial screen of eight E. faecium strains, three strains with varying DAP/phage susceptibilities were selected for further experiments. Phage-to-strain specificity contributed to synergy with antibiotics by time-kill analyses and was associated with lower development of phage resistance.


Subject(s)
Anti-Bacterial Agents , Daptomycin , Enterococcus faecium , Phage Therapy , Anti-Bacterial Agents/pharmacology , Bacteriophages , Daptomycin/pharmacology , Gram-Positive Bacterial Infections/therapy , Humans , Microbial Sensitivity Tests
12.
J Antimicrob Chemother ; 75(10): 2894-2901, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32591820

ABSTRACT

BACKGROUND: Increasing application of vancomycin due to the high prevalence of MRSA infections has led to the emergence of vancomycin intermediate-resistant Staphylococcus aureus (VISA) and heterogeneous VISA (hVISA). Consequently, the need for alternative therapies that target MRSA has become evident. OBJECTIVES: To evaluate the synergy between (lipo)glycopeptides (LGP/GPs) (vancomycin, teicoplanin, telavancin, dalbavancin and oritavancin) and ß-lactams (ceftaroline, cefepime, cefazolin and oxacillin) against MRSA, hVISA, VISA and daptomycin non-susceptible (DNS) phenotypes. METHODS: Twenty randomly selected clinical MRSA strains (i.e. 5 MRSA, 5 hVISA, 5 VISA and 5 DNS) were assessed versus LGP/GPs alone and LGP/GPs in combination with ß-lactams for MICs. Although verification of antibiotic potency against bacterial strains is assessed by the microbroth dilution (MBD) MIC method recommended by the CLSI, some antibiotics need modified assay conditions in order to demonstrate their optimal activity. RESULTS: Addition of ß-lactams reduced MIC values of LGP/GPs against all strains (up to 160-fold reduction). In general, LGPs (dalbavancin, oritavancin and telavancin) were more active (significant differences in MIC values, up to 8-fold) compared with vancomycin and teicoplanin. The majority of these combinations were bactericidal and superior to any single agent. CONCLUSIONS: This report has examined the susceptibility patterns of LGP/GPs and their combination with ß-lactams. Of interest, the impact of susceptibility tests (in terms of MIC plates and their surface area) on the synergistic activity in 24 h time-kill experiments was apparent for LGPs. Further clinical research is required to investigate synergy with LGP/GPs and ß-lactams against these Staphylococcus strains.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Glycopeptides/pharmacology , Humans , Microbial Sensitivity Tests , Vancomycin , beta-Lactams/pharmacology
13.
Article in English | MEDLINE | ID: mdl-30670436

ABSTRACT

Glycopeptides such as vancomycin have been used as the first-line therapy against MRSA infections for over half a century. Reduced susceptibility and emergence of resistance to first-generation glycopeptides has led to development of second-generation lipoglycopeptide derivatives such as dalbavancin which hold broader ranges of activity and enhanced pharmacokinetic properties. We evaluated the MIC values for a total of 100 isolates, including 25 methicillin-resistant Staphylococcus aureus (MRSA), 25 heterogeneus vancomycin-intermediate S. aureus, 25 daptomycin nonsusceptible (DNS), and 25 vancomycin-intermediate S. aureus strains against dalbavancin, ceftaroline, and vancomycin alone and in combination. Dalbavancin was highly active against hVISA, DNS, and MRSA strains, achieving 96 to 100% susceptibility and 72% susceptibility against VISA strains. The combination of dalbavancin plus ceftaroline reduced dalbavancin MICs 62.5-fold and demonstrated enhanced killing against all four phenotypes in pharmacokinetic/pharmacodynamic models. Four strains of the aforementioned phenotypes were randomly chosen for pharmacodynamic/pharmacokinetic simulation models. Of interest, while both dalbavancin and vancomycin in combination with ceftaroline demonstrated significant improvement in glycopeptide fAUC/MIC values against these four phenotypes, the dalbavancin-ceftaroline combinations exhibited a 44- to 11,270-fold higher fAUC/MIC value in comparison to vancomycin-ceftaroline combinations. In addition, the time to detection limit was reduced for this combination (24 to 32 h) versus the vancomycin-ceftaroline combination (24 to 72h). To our knowledge, this is the first comprehensive study of dalbavancin and vancomycin combinations with ceftaroline. These data provide a novel approach for combating recalcitrant MRSA infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Staphylococcus aureus/drug effects , Teicoplanin/analogs & derivatives , Anti-Bacterial Agents/pharmacokinetics , Daptomycin/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Synergism , Drug Therapy, Combination , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Models, Biological , Staphylococcus aureus/isolation & purification , Teicoplanin/pharmacokinetics , Teicoplanin/pharmacology , Vancomycin/pharmacology , Ceftaroline
14.
Article in English | MEDLINE | ID: mdl-31182535

ABSTRACT

Multidrug-resistant (MDR) Gram-negative organisms are a major health concern due to lack of effective therapy. Emergence of resistance to newer agents like ceftazidime-avibactam (CZA) further magnifies the problem. In this context, combination therapy of CZA with other antimicrobials may have potential in treating these pathogens. Unfortunately, there are limited data regarding these combinations. Therefore, the objective of this study was to evaluate CZA in combination with amikacin (AMK), aztreonam (AZT), colistin (COL), fosfomycin (FOS), and meropenem (MEM) against 21 carbapenem-resistant Klebsiella pneumoniae and 21 MDR Pseudomonas aeruginosa strains. The potential for synergy was evaluated via MIC combination evaluation and time-kill assays. All strains were further characterized by whole-genome sequencing, quantitative real-time PCR, and SDS-PAGE analysis to determine potential mechanisms of resistance. Compared to CZA alone, we observed a 4-fold decrease in CZA MICs for a majority of K. pneumoniae strains and at least a 2-fold decrease for most P. aeruginosa isolates in the majority of combinations tested. In both P. aeruginosa and K. pneumoniae strains, CZA in combination with AMK or AZT was synergistic (≥2.15-log10 CFU/ml decrease). CZA-MEM was effective against P. aeruginosa and CZA-FOS was effective against K. pneumoniae Time-kill analysis also revealed that the synergy of CZA with MEM or AZT may be due to the previously reported restoration of MEM or AZT activity against these organisms. Our findings show that CZA in combination with these antibiotics has potential for therapeutic options in difficult to treat pathogens. Further evaluation of these combinations is warranted.


Subject(s)
Amikacin/pharmacology , Azabicyclo Compounds/pharmacology , Aztreonam/pharmacology , Ceftazidime/pharmacology , Colistin/pharmacology , Fosfomycin/pharmacology , Klebsiella pneumoniae/drug effects , Meropenem/pharmacology , Pseudomonas aeruginosa/drug effects , Drug Combinations , Drug Resistance, Multiple, Bacterial , Drug Synergism , Microbial Sensitivity Tests
15.
Article in English | MEDLINE | ID: mdl-30962347

ABSTRACT

The viridans group streptococci (VGS) are a heterogeneous group of organisms which are important components of the normal human oral flora. Among the VGS, the Streptococcus mitis/oralis subgroup is one of the most common causes of infective endocarditis (IE). Daptomycin (DAP) is a potential alternative therapeutic option for invasive S. mitis infections, given high rates of ß-lactam resistance and vancomycin tolerance in such strains. However, the ability of these strains to rapidly evolve high-level and durable DAP resistance (DAP-R) is problematic. Recent data suggest that combination DAP-ß-lactam therapy circumvents this issue. Human-simulated dose-escalating DAP-alone dose regimens (6, 8, 10, or 12 mg/kg/day times 4 days) versus DAP (6 mg/kg/day) plus ceftriaxone (CRO) (2 g once daily times 4 days or 0.5 g, single dose) were assessed against two prototypical DAP-susceptible (DAP-S) S. mitis/oralis strains (SF100 and 351), as measured by a pharmacokinetic/pharmacodynamic (PK/PD) model of simulated endocardial vegetations (SEVs). No DAP-alone regimen was effective, with regrowth of high-level DAP-R isolates observed for both strains over 96-h exposures. Combinations of DAP-CRO with either single- or multidose regimens yielded significant reductions in log10 CFU/g amounts within SEVs for both strains (∼6 log10 CFU/g) within 24 h. In addition, no DAP-R strains were detected in either DAP-CRO combination regimens over the 96-h exposure. In contrast to prior in vitro studies, no perturbations in two key cardiolipin biosynthetic genes (cdsA and pgsA) were identified in DAP-R SEV isolates emerging from strain 351, despite defective phospholipid production. The combination of DAP-CRO warrants further investigation for treatment of IE due to S. mitis/oralis.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Ceftriaxone/administration & dosage , Daptomycin/administration & dosage , Endocarditis, Bacterial/drug therapy , Streptococcus mitis/drug effects , Streptococcus oralis/drug effects , Drug Resistance, Bacterial/drug effects , Drug Therapy, Combination/methods , Endocarditis/drug therapy , Endocarditis/microbiology , Endocarditis, Bacterial/microbiology , Humans , Microbial Sensitivity Tests/methods , Streptococcus mitis/metabolism , Streptococcus oralis/metabolism , Vancomycin/administration & dosage , beta-Lactams/metabolism
16.
J Antimicrob Chemother ; 74(1): 82-86, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30260409

ABSTRACT

Background: Emergence of reduced susceptibility to vancomycin warrants the development of new antimicrobial agents for the treatment of MRSA. We evaluated the activity of dalbavancin, a novel lipoglycopeptide antibiotic, both alone and combined with ß-lactams, in combination MIC testing and time-kill assays against resistant phenotypes of Staphylococcus aureus. Methods: S. aureus isolates included 50 organisms with varying susceptibility patterns. Dalbavancin was tested alone and in combination with five ß-lactams: cefazolin, cefepime, ceftaroline, ertapenem and oxacillin. MIC values of the antibiotics were determined for all isolates. After initial MIC testing, dalbavancin MICs were determined in the presence of 0.5 × MIC of each ß-lactam to determine the effect of each ß-lactam on dalbavancin MIC. Time-kill assays were performed with dalbavancin and ß-lactams tested at 0.5 × MIC for randomly selected organisms representing each MRSA phenotype. Time-kill curves were generated by plotting mean colony counts (log10 cfu/mL) versus time. Results: Dalbavancin MIC50 was 0.0313 mg/L and MIC90 was 0.0625 mg/L. Dalbavancin MICs decreased by zero to greater than five 2-fold dilutions in combination with each ß-lactam. In time-kill assays, dalbavancin was synergistic with cefazolin, cefepime and ertapenem against all strains and the combination of dalbavancin and ceftaroline was synergistic against all but one. The combination of dalbavancin and oxacillin was synergistic against 5/8 strains. Conclusions: Dalbavancin was active against all MRSA strains tested, including heteroresistant vancomycin-intermediate S. aureus, vancomycin-intermediate S. aureus, daptomycin-non-susceptible and linezolid-resistant isolates. The synergy demonstrated against these organisms supports the use of dalbavancin in combination with ß-lactams against resistant phenotypes of S. aureus. Further evaluation is warranted.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Staphylococcus aureus/drug effects , Teicoplanin/analogs & derivatives , beta-Lactams/pharmacology , Drug Interactions , Microbial Sensitivity Tests , Phenotype , Teicoplanin/pharmacology
17.
Article in English | MEDLINE | ID: mdl-29530843

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for health care-associated infections, and treatment options are limited. Tedizolid (TZD) is a novel oxazolidinone antibiotic with activity against MRSA. Previously, daptomycin (DAP) has demonstrated synergy with other antibiotics against MRSA. We sought to determine the efficacy of the combination of TZD and DAP against MRSA in an in vitro model of simulated endocardial vegetations (SEVs). TZD simulations of 200 mg once daily and DAP simulations of 6 mg/kg of body weight and 10 mg/kg once daily were tested alone and in the combinations TZD plus DAP at 6 mg/kg or DAP at 10 mg/kg against two clinical strains of MRSA, 494 and 67. These regimens were tested in SEV models over 8 days to determine the antibacterial activity of the regimens and whether synergy or antagonism might be present between the agents. Against both strains 494 and 67 and at both DAP dose regimens, the combination of TZD and DAP was antagonistic at 192 h. In all cases, DAP alone was statistically superior to DAP plus TZD. When the combination was stopped after 96 h, transitioning to DAP at 6 mg/kg or DAP at 10 mg/kg alone resulted in better antibacterial activity than either of the TZD-plus-DAP combinations, further demonstrating antagonistic effects. Against MRSA, we demonstrated that TZD and DAP have antagonistic activity that hinders their overall antimicrobial efficacy. The exact nature of this antagonistic relationship is still undetermined, but its presence warrants further study of the potentially harmful grouping of the two antibiotics in clinical use.


Subject(s)
Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Endocarditis, Bacterial/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Oxazolidinones/pharmacology , Tetrazoles/pharmacology , Drug Therapy, Combination
18.
Article in English | MEDLINE | ID: mdl-29760141

ABSTRACT

Enterococcus faecium isolates that harbor LiaFSR substitutions but are phenotypically susceptible to daptomycin (DAP) by current breakpoints are problematic, since predisposition to resistance may lead to therapeutic failure. Using a simulated endocardial vegetation (SEV) pharmacokinetic/pharmacodynamic (PK/PD) model, we investigated DAP regimens (6, 8, and 10 mg/kg of body weight/day) as monotherapy and in combination with ampicillin (AMP), ceftaroline (CPT), or ertapenem (ERT) against E. faecium HOU503, a DAP-susceptible strain that harbors common LiaS and LiaR substitutions found in clinical isolates (T120S and W73C, respectively). Of interest, the efficacy of DAP monotherapy, at any dose regimen, was dependent on the size of the inoculum. At an inoculum of ∼109 CFU/g, DAP doses of 6 to 8 mg/kg/day were not effective and led to significant regrowth with emergence of resistant derivatives. In contrast, at an inoculum of ∼107 CFU/g, marked reductions in bacterial counts were observed with DAP at 6 mg/kg/day, with no resistance. The inoculum effect was confirmed in a rat model using humanized DAP exposures. Combinations of DAP with AMP, CPT, or ERT demonstrated enhanced eradication and reduced potential for resistance, allowing de-escalation of the DAP dose. Persistence of the LiaRS substitutions was identified in DAP-resistant isolates recovered from the SEV model and in DAP-resistant derivatives of an initially DAP-susceptible clinical isolate of E. faecium (HOU668) harboring LiaSR substitutions that was recovered from a patient with a recurrent bloodstream infection. Our results provide novel data for the use of DAP monotherapy and combinations for recalcitrant E. faecium infections and pave the way for testing these approaches in humans.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Daptomycin/pharmacology , Endocarditis/drug therapy , Enterococcus faecium/drug effects , Gram-Positive Bacterial Infections/drug therapy , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/pharmacokinetics , Aortic Valve/drug effects , Aortic Valve/microbiology , Aortic Valve/pathology , Area Under Curve , Bacterial Load , Daptomycin/pharmacokinetics , Disease Models, Animal , Drug Administration Schedule , Drug Combinations , Drug Resistance, Bacterial/genetics , Drug Synergism , Endocarditis/microbiology , Endocarditis/pathology , Endocardium/drug effects , Endocardium/microbiology , Endocardium/pathology , Enterococcus faecium/genetics , Enterococcus faecium/growth & development , Enterococcus faecium/isolation & purification , Gene Expression , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/pathology , Humans , Male , Microbial Sensitivity Tests , Rats , Rats, Sprague-Dawley , Whole Genome Sequencing , beta-Lactams/pharmacokinetics
19.
J Antimicrob Chemother ; 72(8): 2290-2296, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28475731

ABSTRACT

Objectives: Among viridans group streptococcal infective endocarditis (IE), the Streptococcus mitis group is the most common aetiological organism. Treatment of IE caused by the S. mitis group is challenging due to the high frequency of ß-lactam resistance, drug allergy and intolerability of mainstay antimicrobial agents such as vancomycin or gentamicin. Daptomycin has been suggested as an alternative therapeutic option in these scenarios based on its excellent susceptibility profile against S. mitis group strains . However, the propensity of many S. mitis group strains to rapidly evolve stable, high-level daptomycin resistance potentially limits this approach. Methods: We evaluated the activity of 6 mg/kg/day daptomycin alone or in combination with gentamicin, ceftriaxone or ceftaroline against two daptomycin-susceptible S. mitis group strains over 96 h in a pharmacokinetic/pharmacodynamic model of simulated endocardial vegetations. Results: Daptomycin alone was not bactericidal and high-level daptomycin resistance evolved at 96 h in both organisms. Combinations of daptomycin + ceftriaxone and daptomycin + ceftaroline demonstrated enhanced killing activity compared with each antibiotic alone and prevented emergence of daptomycin resistance at 96 h. Use of gentamicin as an adjunctive agent neither improved the efficacy of daptomycin nor prevented the development of daptomycin resistance. Conclusions: Addition of ceftriaxone or ceftaroline to daptomycin improves the bactericidal activity against S. mitis group strains and prevents daptomycin resistance emergence. Further investigation with combinations of daptomycin and ß-lactams in a large number of strains is warranted to fully elucidate the clinical implications of such combinations for treatment of S. mitis group IE.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cephalosporins/administration & dosage , Daptomycin/administration & dosage , Endocarditis/drug therapy , Gentamicins/administration & dosage , Streptococcal Infections/drug therapy , Streptococcus mitis/drug effects , Drug Therapy, Combination , Endocarditis/microbiology , Humans , Models, Biological , Streptococcal Infections/microbiology , Treatment Outcome
20.
Microbiol Spectr ; 12(4): e0321223, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38411110

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) causes biofilm-related medical device infections. Phage-antibiotic combinations offer potential therapy due to proven in vitro antibiofilm efficacy. We evaluated phage-antibiotic synergy against biofilms using modified checkerboard and 24-h time-kill assays. Humanized-simulated daptomycin (DAP) (10, 8, and 6 mg/kg q24h) and ceftaroline (CPT) (600 mg q12h) were combined with Intesti13, Sb-1, and Romulus phages (tMOI 1, q12h). Assays were conducted in 168-h biofilm reactor models against DAP non-susceptible (DNS) vancomycin intermediate S. aureus (VISA) MRSA D712 and DAP-susceptible MRSA 8014. Synergistic activity and bactericidal activity were defined as ≥2log10 CFU/mL reduction from antibiotic-only regimens and ≥3log10 CFU/mL decrease from baseline at 24 h. Differences were analyzed by one-way analysis of variance with Tukey's post hoc test (P ≤ 0.05 is considered significant). Surviving bacteria were examined for antibiotic minimum biofilm inhibitory concentration (MBIC) changes and phage susceptibility. In 168-h biofilm models, humanized DAP 10 mg/kg + CPT, combined with a 2-phage cocktail (Intesti13 + Sb-1) against D712, and a 3-phage cocktail (Intesti13 + Sb-1 + Romulus) against 8014, demonstrated synergistic bactericidal activity. At 168 h, bacteria were minimally detectable [2log10 CFU/cm2 (-Δ4.23 and -Δ4.42 log10 CFU/cm2; both P < 0.001)]. Antibiotic MBIC remained unchanged compared to baseline across various time points. None of the tested bacteria at 168 h exhibited complete phage resistance. This study reveals bactericidal efficacy of DAP + CPT with 2-phage and 3-phage cocktails against DNS VISA and MRSA isolates (D712 and 8014) in biofilm models, maintaining susceptibility. Further research is needed for diverse strains and durations, aligning with infection care. IMPORTANCE: The prevalence of biofilm-associated medical device infections caused by methicillin-resistant Staphylococcus aureus (MRSA) presents a pressing medical challenge. The latest research demonstrates the potential of phage-antibiotic combinations (PACs) as a promising solution, notably in vitro antibiofilm efficacy. By adopting modified checkerboard and 24-h time-kill assays, the study investigated the synergistic action of phages combined with humanized-simulated doses of daptomycin (DAP) and ceftaroline (CPT). The results were promising: a combination of DAP, CPT, and either a 2-phage or 3-phage cocktail effectively exhibited bactericidal activity against both DAP non-susceptible vancomycin intermediate S. aureus MRSA and DAP-susceptible MRSA strains within 168-h biofilm models. Moreover, post-treatment evaluations revealed no discernible rise in antibiotic resistance or complete phage resistance. This pioneering work suggests the potential of PACs in addressing MRSA biofilm infections, setting the stage for further expansive research tailored to diverse bacterial strains and treatment durations.


Subject(s)
Benzimidazoles , Carboxylic Acids , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Staphylococcus aureus , Cephalosporins/pharmacology , Ceftaroline , Biofilms , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL