Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 31(8): 1183-1196, 2022 04 22.
Article in English | MEDLINE | ID: mdl-34673953

ABSTRACT

Endocytosis is a fundamentally important process through which material is internalized into cells from the extracellular environment. In the renal proximal tubule, endocytosis of the abundant scavenger receptor megalin and its co-receptor cubilin play a vital role in retrieving low molecular weight proteins from the renal filtrate. Although we know much about megalin and its ligands, the machinery and mechanisms by which the receptor is trafficked through the endosomal system remain poorly defined. In this study, we show that inositol phosphatase interacting protein of 27 kDa (Ipip27A), an interacting partner of the Lowe syndrome protein oculocerebrorenal syndrome of Lowe (OCRL), is required for endocytic traffic of megalin within the proximal renal tubule of zebrafish larvae. Knockout of Ipip27A phenocopies the endocytic phenotype seen upon loss of OCRL, with a deficit in uptake of both fluid-phase and protein cargo, which is accompanied by a reduction in megalin abundance and altered endosome morphology. Rescue and co-depletion experiments indicate that Ipip27A functions together with OCRL to support proximal tubule endocytosis. The results therefore identify Ipip27A as a new player in endocytic traffic in the proximal tubule in vivo and support the view that defective endocytosis underlies the renal tubulopathy in Lowe syndrome and Dent-2 disease.


Subject(s)
Oculocerebrorenal Syndrome , Phosphoric Monoester Hydrolases/metabolism , Zebrafish Proteins/metabolism , Animals , Endocytosis/genetics , Endosomes/genetics , Endosomes/metabolism , Female , Humans , Inositol Phosphates/metabolism , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism , Phosphoric Monoester Hydrolases/genetics , Proteins/metabolism , Zebrafish/genetics , Zebrafish/metabolism
2.
J Am Soc Nephrol ; 31(7): 1522-1537, 2020 07.
Article in English | MEDLINE | ID: mdl-32503896

ABSTRACT

BACKGROUND: Mutations in the gene that encodes the lysosomal cystine transporter cystinosin cause the lysosomal storage disease cystinosis. Defective cystine transport leads to intralysosomal accumulation and crystallization of cystine. The most severe phenotype, nephropathic cystinosis, manifests during the first months of life, as renal Fanconi syndrome. The cystine-depleting agent cysteamine significantly delays symptoms, but it cannot prevent progression to ESKD and does not treat Fanconi syndrome. This suggests the involvement of pathways in nephropathic cystinosis that are unrelated to lysosomal cystine accumulation. Recent data indicate that one such potential pathway, lysosome-mediated degradation of autophagy cargoes, is compromised in cystinosis. METHODS: To identify drugs that reduce levels of the autophagy-related protein p62/SQSTM1 in cystinotic proximal tubular epithelial cells, we performed a high-throughput screening on the basis of an in-cell ELISA assay. We then tested a promising candidate in cells derived from patients with, and mouse models of, cystinosis, and in preclinical studies in cystinotic zebrafish. RESULTS: Of 46 compounds identified as reducing p62/SQSTM1 levels in cystinotic cells, we selected luteolin on the basis of its efficacy, safety profile, and similarity to genistein, which we previously showed to ameliorate other lysosomal abnormalities of cystinotic cells. Our data show that luteolin improves the autophagy-lysosome degradative pathway, is a powerful antioxidant, and has antiapoptotic properties. Moreover, luteolin stimulates endocytosis and improves the expression of the endocytic receptor megalin. CONCLUSIONS: Our data show that luteolin improves defective pathways of cystinosis and has a good safety profile, and thus has potential as a treatment for nephropathic cystinosis and other renal lysosomal storage diseases.


Subject(s)
Antioxidants/pharmacology , Cystinosis/drug therapy , Drug Evaluation, Preclinical/methods , Luteolin/pharmacology , RNA, Messenger/metabolism , Amino Acid Transport Systems, Neutral/genetics , Animals , Antioxidants/adverse effects , Apoptosis/drug effects , Autophagy/drug effects , Cells, Cultured , Cystinosis/metabolism , Disease Models, Animal , Endocytosis/drug effects , Humans , Kidney Tubules, Proximal/pathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Luteolin/adverse effects , Lysosomes/drug effects , Mice , Oxidative Stress/drug effects , Phenotype , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Zebrafish
3.
J Cell Sci ; 130(3): 637-647, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28049718

ABSTRACT

The major mammalian bloodstream form of the African sleeping sickness parasite Trypanosoma brucei multiplies rapidly, and it is important to understand how these cells divide. Organelle inheritance involves complex spatiotemporal re-arrangements to ensure correct distribution to daughter cells. Here, serial block face scanning electron microscopy (SBF-SEM) was used to reconstruct whole individual cells at different stages of the cell cycle to give an unprecedented temporal, spatial and quantitative view of organelle division, inheritance and abscission in a eukaryotic cell. Extensive mitochondrial branching occurred only along the ventral surface of the parasite, but the mitochondria returned to a tubular form during cytokinesis. Fission of the mitochondrion occurred within the cytoplasmic bridge during the final stage of cell division, correlating with cell abscission. The nuclei were located underneath each flagellum at mitosis and the mitotic spindle was located along the ventral surface, further demonstrating the asymmetric arrangement of cell cleavage in trypanosomes. Finally, measurements demonstrated that multiple Golgi bodies were accurately positioned along the flagellum attachment zone, suggesting a mechanism for determining the location of Golgi bodies along each flagellum during the cell cycle.


Subject(s)
Cell Cycle , Imaging, Three-Dimensional , Microscopy, Electron, Scanning/methods , Organelles/metabolism , Organelles/ultrastructure , Trypanosoma brucei brucei/cytology , Trypanosoma brucei brucei/ultrastructure , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Flagella/metabolism , Flagella/ultrastructure , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Dynamics , Models, Biological , Trypanosoma brucei brucei/metabolism
4.
Parasitology ; 145(7): 848-854, 2018 06.
Article in English | MEDLINE | ID: mdl-29179788

ABSTRACT

X-ray micro-computed tomography (µCT) is a technique which can obtain three-dimensional images of a sample, including its internal structure, without the need for destructive sectioning. Here, we review the capability of the technique and examine its potential to provide novel insights into the lifestyles of parasites embedded within host tissue. The current capabilities and limitations of the technology in producing contrast in soft tissues are discussed, as well as the potential solutions for parasitologists looking to apply this technique. We present example images of the mouse whipworm Trichuris muris and discuss the application of µCT to provide unique insights into parasite behaviour and pathology, which are inaccessible to other imaging modalities.


Subject(s)
Imaging, Three-Dimensional , Parasites/anatomy & histology , X-Ray Microtomography , Animals , Mice , Trichuriasis/diagnostic imaging , Trichuris/anatomy & histology
6.
Proc Natl Acad Sci U S A ; 111(2): 687-92, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24385584

ABSTRACT

Cell-directed deposition of aligned collagen fibrils during corneal embryogenesis is poorly understood, despite the fact that it is the basis for the formation of a corneal stroma that must be transparent to visible light and biomechanically stable. Previous studies of the structural development of the specialized matrix in the cornea have been restricted to examinations of tissue sections by conventional light or electron microscopy. Here, we use volume scanning electron microscopy, with sequential removal of ultrathin surface tissue sections achieved either by ablation with a focused ion beam or by serial block face diamond knife microtomy, to examine the microanatomy of the cornea in three dimensions and in large tissue volumes. The results show that corneal keratocytes occupy a significantly greater tissue volume than was previously thought, and there is a clear orthogonality in cell and matrix organization, quantifiable by Fourier analysis. Three-dimensional reconstructions reveal actin-associated tubular cell protrusions, reminiscent of filopodia, but extending more than 30 µm into the extracellular space. The highly extended network of these membrane-bound structures mirrors the alignment of collagen bundles and emergent lamellae and, we propose, plays a fundamental role in dictating the orientation of collagen in the developing cornea.


Subject(s)
Cornea/embryology , Corneal Keratocytes/ultrastructure , Extracellular Matrix/ultrastructure , Pseudopodia/ultrastructure , Animals , Chick Embryo , Collagen/metabolism , Cornea/cytology , Corneal Keratocytes/metabolism , Fourier Analysis , Imaging, Three-Dimensional , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Pseudopodia/metabolism
7.
J Microsc ; 261(2): 167-76, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25762522

ABSTRACT

Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general.


Subject(s)
Endocytosis , Nanoparticles/analysis , Quantum Dots/analysis , Cell Line , Endosomes/ultrastructure , Flow Cytometry , Microscopy, Electron, Scanning/methods , Microscopy, Electron, Transmission/methods , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Quantum Dots/ultrastructure , Semiconductors
8.
Proc Natl Acad Sci U S A ; 110(49): E4743-52, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24248360

ABSTRACT

Collagen fibrils can exceed thousands of microns in length and are therefore the longest, largest, and most size-pleomorphic protein polymers in vertebrates; thus, knowing how cells transport collagen fibrils is essential for a more complete understanding of protein transport and its role in tissue morphogenesis. Here, we identified newly formed collagen fibrils being transported at the surface of embryonic tendon cells in vivo by using serial block face-scanning electron microscopy of the cell-matrix interface. Newly formed fibrils ranged in length from ~1 to ~30 µm. The shortest (1-10 µm) occurred in intracellular fibricarriers; the longest (~30 µm) occurred in plasma membrane fibripositors. Fibrils and fibripositors were reduced in numbers when collagen secretion was blocked. ImmunoEM showed the absence of lysosomal-associated membrane protein 2 on fibricarriers and fibripositors and there was no effect of leupeptin on fibricarrier or fibripositor number and size, suggesting that fibricarriers and fibripositors are not part of a fibril degradation pathway. Blebbistatin decreased fibricarrier number and increased fibripositor length; thus, nonmuscle myosin II (NMII) powers the transport of these compartments. Inhibition of dynamin-dependent endocytosis with dynasore blocked fibricarrier formation and caused accumulation of fibrils in fibripositors. Data from fluid-phase HRP electron tomography showed that fibricarriers could originate at the plasma membrane. We propose that NMII-powered transport of newly formed collagen fibrils at the plasma membrane is fundamental to the development of collagen fibril-rich tissues. A NMII-dependent cell-force model is presented as the basis for the creation and dynamics of fibripositor structures.


Subject(s)
Cell Membrane/metabolism , Collagen/metabolism , Myosin Type II/metabolism , Actomyosin/metabolism , Amino Acids, Dicarboxylic , Animals , Biological Transport , Chick Embryo , Collagen/biosynthesis , Collagen/physiology , Collagen/ultrastructure , Extracellular Matrix/metabolism , Microscopy, Electron, Scanning , Microscopy, Immunoelectron , Prolyl-Hydroxylase Inhibitors/pharmacology
9.
Biophys J ; 108(3): 498-507, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25650918

ABSTRACT

The intercalated disc (ICD) orchestrates electrochemical and mechanical communication between neighboring cardiac myocytes, properties that are perturbed in heart failure (HF). Although structural data from transmission electron microscopy two-dimensional images have provided valuable insights into the domains forming the ICD, there are currently no three-dimensional (3D) reconstructions for an entire ICD in healthy or diseased hearts. Here, we aimed to understand the link between changes in protein expression in an ovine tachypacing-induced HF model and ultrastructural remodeling of the ICD by determining the 3D intercalated disc architecture using serial block face scanning electron microscopy. In the failing myocardium there is no change to the number of ICDs within the left ventricle, but there is an almost doubling of the number of discs with a surface area of <1.0 × 10(8)µm(2) in comparison to control. The 3D reconstructions further revealed that there is remodeling of the plicate domains and gap junctions with vacuole formation around and between the contributing membranes that form the ICDs in HF. Biochemical analysis revealed upregulation of proteins involved in stabilizing the adhesive and mechanical properties consistent with the morphological changes. Our studies here have shown that in tachypacing-induced HF mechanical stresses are associated with both structural and molecular alterations. To our knowledge, these data together provide novel, to our knowledge, insights as to how remodeling at the molecular and structural levels leads to impaired intercellular communication.


Subject(s)
Gap Junctions/ultrastructure , Heart Failure/pathology , Heart Failure/physiopathology , Imaging, Three-Dimensional , Intercellular Junctions/ultrastructure , Animals , Gap Junctions/metabolism , Heart Ventricles/physiopathology , Heart Ventricles/ultrastructure , Mitochondria, Heart/ultrastructure , Proteins/metabolism , Sheep , Up-Regulation , Vacuoles/ultrastructure
10.
Birth Defects Res C Embryo Today ; 105(1): 9-18, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25820245

ABSTRACT

Studies of gene regulation, signaling pathways, and stem cell biology are contributing greatly to our understanding of early embryonic vertebrate development. However, much less is known about the events during the latter half of embryonic development, when tissues comprising mostly extracellular matrix (ECM) are formed. The matrix extends far beyond the boundaries of individual cells and is refractory to study by conventional biochemical and molecular techniques; thus major gaps exist in our knowledge of the formation and three-dimensional (3D) organization of the dense tissues that form the bulk of adult vertebrates. Serial block face-scanning electron microscopy (SBF-SEM) has the ability to image volumes of tissue containing numerous cells at a resolution sufficient to study the organization of the ECM. Furthermore, whereas light microscopy was once relatively straightforward and electron microscopy was performed in specialist laboratories, the tables are turned; SBF-SEM is relatively straightforward and is becoming routine in high-end resolution studies of embryonic structures in vivo. In this review, we discuss the emergence of SBF-SEM as a tool for studying embryonic vertebrate development.


Subject(s)
Embryonic Development/physiology , Extracellular Matrix/physiology , Microscopy, Electron, Scanning/methods , Microtomy/methods , Humans , Microscopy, Electron, Scanning/trends
11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1725-35, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26249353

ABSTRACT

ABCG2 is an efflux drug transporter that plays an important role in drug resistance and drug disposition. In this study, the first three-dimensional structure of human full-length ABCG2 analysed by electron crystallography from two-dimensional crystals in the absence of nucleotides and transported substrates is reported at 2 nm resolution. In this state, ABCG2 forms a symmetric homodimer with a noncrystallographic twofold axis perpendicular to the two-dimensional crystal plane, as confirmed by subtomogram averaging. This configuration suggests an inward-facing configuration similar to murine ABCB1, with the nucleotide-binding domains (NBDs) widely separated from each other. In the three-dimensional map, densities representing the long cytoplasmic extensions from the transmembrane domains that connect the NBDs are clearly visible. The structural data have allowed the atomic model of ABCG2 to be refined, in which the two arms of the V-shaped ABCG2 homodimeric complex are in a more closed and narrower conformation. The structural data and the refined model of ABCG2 are compatible with the biochemical analysis of the previously published mutagenesis studies, providing novel insight into the structure and function of the transporter.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Cryoelectron Microscopy , Neoplasm Proteins/chemistry , Protein Structure, Quaternary , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/ultrastructure , Breast/metabolism , Breast Neoplasms/metabolism , Cryoelectron Microscopy/methods , Crystallization/methods , Female , Humans , Models, Molecular , Neoplasm Proteins/metabolism , Neoplasm Proteins/ultrastructure , Protein Multimerization
12.
J Cell Sci ; 126(Pt 24): 5748-57, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24127564

ABSTRACT

Flagella are highly conserved organelles present in a wide variety of species. In Trypanosoma brucei the single flagellum is necessary for morphogenesis, cell motility and pathogenesis, and is attached along the cell body. A new flagellum is formed alongside the old during the cell division cycle. In the (insect) procyclic form, the flagella connector (FC) attaches the tip of the new flagellum to the side of the old flagellum, ensuring faithful replication of cell architecture. The FC is not present in the bloodstream form of the parasite. We show here, using new imaging techniques including serial block-face scanning electron microscopy (SBF-SEM), that the distal tip of the new flagellum in the bloodstream form is embedded within an invagination in the cell body plasma membrane, named the groove. We suggest that the groove has a similar function to the flagella connector. The groove is a mobile junction located alongside the microtubule quartet (MtQ) and occurred within a gap in the subpellicular microtubule corset, causing significant modification of microtubules during elongation of the new flagellum. It appears likely that this novel form of morphogenetic structure has evolved to withstand the hostile immune response in the mammalian blood.


Subject(s)
Flagella/ultrastructure , Trypanosoma brucei brucei/ultrastructure , Adaptation, Biological , Axoneme/ultrastructure , Cell Cycle , Life Cycle Stages , Microscopy, Electron, Transmission , Trypanosoma brucei brucei/growth & development , Trypanosomiasis/blood
13.
J Anat ; 224(5): 548-55, 2014 May.
Article in English | MEDLINE | ID: mdl-24571576

ABSTRACT

Achilles tendinopathies display focal tissue thickening with pain and ultrasonography changes. Whilst complete rupture might be expected to induce changes in tissue organization and protein composition, little is known about the consequences of non-rupture-associated tendinopathies, especially with regards to changes in the content of collagen type I and III (the major collagens in tendon), and changes in tendon fibroblast (tenocyte) shape and organization of the extracellular matrix (ECM). To gain new insights, we took biopsies from the tendinopathic region and flanking healthy region of Achilles tendons of six individuals with clinically diagnosed tendinopathy who had no evidence of cholesterol, uric acid and amyloid accumulation. Biochemical analyses of collagen III/I ratio were performed on all six individuals, and electron microscope analysis using transmission electron microscopy and serial block face-scanning electron microscopy were made on two individuals. In the tendinopathic regions, compared with the flanking healthy tissue, we observed: (i) an increase in the ratio of collagen III : I proteins; (ii) buckling of the collagen fascicles in the ECM; (iii) buckling of tenocytes and their nuclei; and (iv) an increase in the ratio of small-diameter : large-diameter collagen fibrils. In summary, load-induced non-rupture tendinopathy in humans is associated with localized biochemical changes, a shift from large- to small-diameter fibrils, buckling of the tendon ECM, and buckling of the cells and their nuclei.


Subject(s)
Achilles Tendon/ultrastructure , Collagen Type III/ultrastructure , Tendinopathy/pathology , Achilles Tendon/cytology , Adult , Extracellular Matrix/pathology , Humans , Imaging, Three-Dimensional , Microscopy, Electron , Middle Aged , Stress, Mechanical
14.
BMC Nephrol ; 15: 24, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24484633

ABSTRACT

BACKGROUND: The human glomerulus is the primary filtration unit of the kidney, and contains the Glomerular Filtration Barrier (GFB). The GFB had been thought to comprise 3 layers - the endothelium, the basement membrane and the podocyte foot processes. However, recent studies have suggested that at least two additional layers contribute to the function of the GFB, the endothelial glycocalyx on the vascular side, and the sub-podocyte space on the urinary side. To investigate the structure of these additional layers is difficult as it requires three-dimensional reconstruction of delicate sub-microscopic (<1 µm) cellular and extracellular elements. METHODS: Here we have combined three different advanced electron microscopic techniques that cover multiple orders of magnitude of volume sampled, with a novel staining methodology (Lanthanum Dysprosium Glycosaminoglycan adhesion, or LaDy GAGa), to determine the structural basis of these two additional layers. Serial Block Face Scanning Electron Microscopy (SBF-SEM) was used to generate a 3-D image stack with a volume of a 5.3 x 105 µm3 volume of a whole kidney glomerulus (13% of glomerular volume). Secondly, Focused Ion Beam milling Scanning Electron Microscopy (FIB-SEM) was used to image a filtration region (48 µm3 volume). Lastly Transmission Electron Tomography (Tom-TEM) was performed on a 0.3 µm3 volume to identify the fine structure of the glycocalyx. RESULTS: Tom-TEM clearly showed 20 nm fibre spacing in the glycocalyx, within a limited field of view. FIB-SEM demonstrated, in a far greater field of view, how the glycocalyx structure related to fenestrations and the filtration slits, though without the resolution of TomTEM. SBF-SEM was able to determine the extent of the sub-podocyte space and glycocalyx coverage, without additional heavy metal staining. Neither SBF- nor FIB-SEM suffered the anisotropic shrinkage under the electron beam that is seen with Tom-TEM. CONCLUSIONS: These images demonstrate that the three dimensional structure of the GFB can be imaged, and investigated from the whole glomerulus to the fine structure of the glycocalyx using three dimensional electron microscopy techniques. This should allow the identification of structural features regulating physiology, and their disruption in pathological states, aiding the understanding of kidney disease.


Subject(s)
Glomerular Filtration Barrier/ultrastructure , Glycocalyx/ultrastructure , Imaging, Three-Dimensional/methods , Microscopy, Electron/methods , Animals , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
15.
Biol Open ; 11(6)2022 06 15.
Article in English | MEDLINE | ID: mdl-35616009

ABSTRACT

Endocytosis mediates the cellular uptake of numerous molecules from the extracellular space and is a fundamentally important process. In the renal proximal tubule, the scavenger receptor megalin and its co-receptor cubilin mediate endocytosis of low molecular weight proteins from the renal filtrate. However, the extent to which megalin endocytosis relies on different components of the trafficking machinery remains relatively poorly defined in vivo. In this study, we identify a functional requirement for the F-BAR protein pacsin2 in endocytosis in the renal proximal tubule of zebrafish larvae. Pacsin2 is expressed throughout development and in all zebrafish tissues, similar to the mammalian orthologue. Within renal tubular epithelial cells, pacsin2 is enriched at the apical pole where it is localised to endocytic structures. Loss of pacsin2 results in reduced endocytosis within the proximal tubule, which is accompanied by a reduction in the abundance of megalin and endocytic organelles. Our results indicate that pacsin2 is required for efficient endocytosis in the proximal tubule, where it likely cooperates with other trafficking machinery to maintain endocytic uptake and recycling of megalin.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-2 , Zebrafish , Animals , Biological Transport , Endocytosis/physiology , Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Mammals/metabolism , Zebrafish/metabolism
16.
Cardiovasc Res ; 118(8): 1978-1992, 2022 06 29.
Article in English | MEDLINE | ID: mdl-34173824

ABSTRACT

AIMS: Coronary microvascular smooth muscle cells (SMCs) respond to luminal pressure by developing myogenic tone (MT), a process integral to the regulation of microvascular perfusion. The cellular mechanisms underlying poor myogenic reactivity in patients with heart valve disease are unknown and form the focus of this study. METHODS AND RESULTS: Intramyocardial coronary micro-arteries (IMCAs) isolated from human and pig right atrial (RA) appendage and left ventricular (LV) biopsies were studied using pressure myography combined with confocal microscopy. All RA- and LV-IMCAs from organ donors and pigs developed circa 25% MT. In contrast, 44% of human RA-IMCAs from 88 patients with heart valve disease had poor (<10%) MT yet retained cell viability and an ability to raise cytoplasmic Ca2+ in response to vasoconstrictor agents. Comparing across human heart chambers and species, we found that based on patient medical history and six tests, the strongest predictor of poor MT in IMCAs was increased expression of the synthetic marker caldesmon relative to the contractile marker SM-myosin heavy chain. In addition, high resolution imaging revealed a distinct layer of longitudinally aligned SMCs between ECs and radial SMCs, and we show poor MT was associated with disruptions in these cellular alignments. CONCLUSION: These data demonstrate the first use of atrial and ventricular biopsies from patients and pigs to reveal that impaired coronary MT reflects a switch of viable SMCs towards a synthetic phenotype, rather than a loss of SMC viability. These arteries represent a model for further studies of coronary microvascular contractile dysfunction.


Subject(s)
Heart Valve Diseases , Muscle, Smooth, Vascular , Animals , Coronary Vessels/pathology , Heart Valve Diseases/metabolism , Humans , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Swine
17.
Nat Commun ; 13(1): 1725, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365634

ABSTRACT

Whipworms are large metazoan parasites that inhabit multi-intracellular epithelial tunnels in the large intestine of their hosts, causing chronic disease in humans and other mammals. How first-stage larvae invade host epithelia and establish infection remains unclear. Here we investigate early infection events using both Trichuris muris infections of mice and murine caecaloids, the first in-vitro system for whipworm infection and organoid model for live helminths. We show that larvae degrade mucus layers to access epithelial cells. In early syncytial tunnels, larvae are completely intracellular, woven through multiple live dividing cells. Using single-cell RNA sequencing of infected mouse caecum, we reveal that progression of infection results in cell damage and an expansion of enterocytes expressing of Isg15, potentially instigating the host immune response to the whipworm and tissue repair. Our results unravel intestinal epithelium invasion by whipworms and reveal specific host-parasite interactions that allow the whipworm to establish its multi-intracellular niche.


Subject(s)
Helminths , Trichuriasis , Animals , Intestinal Mucosa , Intestines/parasitology , Mammals , Mice , Trichuris/physiology
18.
Circ Heart Fail ; 14(7): e007505, 2021 07.
Article in English | MEDLINE | ID: mdl-34190577

ABSTRACT

BACKGROUND: Purkinje fibers (PFs) control timing of ventricular conduction and play a key role in arrhythmogenesis in heart failure (HF) patients. We investigated the effects of HF on PFs. METHODS: Echocardiography, electrocardiography, micro-computed tomography, quantitative polymerase chain reaction, immunohistochemistry, volume electron microscopy, and sharp microelectrode electrophysiology were used. RESULTS: Congestive HF was induced in rabbits by left ventricular volume- and pressure-overload producing left ventricular hypertrophy, diminished fractional shortening and ejection fraction, and increased left ventricular dimensions. HF baseline QRS and corrected QT interval were prolonged by 17% and 21% (mean±SEMs: 303±6 ms HF, 249±11 ms control; n=8/7; P=0.0002), suggesting PF dysfunction and impaired ventricular repolarization. Micro-computed tomography imaging showed increased free-running left PF network volume and length in HF. mRNA levels for 40 ion channels, Ca2+-handling proteins, connexins, and proinflammatory and fibrosis markers were assessed: 50% and 35% were dysregulated in left and right PFs respectively, whereas only 12.5% and 7.5% changed in left and right ventricular muscle. Funny channels, Ca2+-channels, and K+-channels were significantly reduced in left PFs. Microelectrode recordings from left PFs revealed more negative resting membrane potential, reduced action potential upstroke velocity, prolonged duration (action potential duration at 90% repolarization: 378±24 ms HF, 249±5 ms control; n=23/38; P<0.0001), and arrhythmic events in HF. Similar electrical remodeling was seen at the left PF-ventricular junction. In the failing left ventricle, upstroke velocity and amplitude were increased, but action potential duration at 90% repolarization was unaffected. CONCLUSIONS: Severe volume- followed by pressure-overload causes rapidly progressing HF with extensive remodeling of PFs. The PF network is central to both arrhythmogenesis and contractile dysfunction and the pathological remodeling may increase the risk of fatal arrhythmias in HF patients.


Subject(s)
Action Potentials/physiology , Heart Failure/physiopathology , Heart Ventricles/physiopathology , Ventricular Remodeling/physiology , Animals , Cardiac Pacing, Artificial/adverse effects , Electrocardiography/methods , Heart Rate/physiology , Male , Models, Animal , Rabbits , X-Ray Microtomography/adverse effects
19.
Mol Cell Biol ; 27(17): 6218-28, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17562872

ABSTRACT

The ability of tendon to transmit forces from muscle to bone is directly attributable to an extracellular matrix (ECM) containing parallel bundles of collagen fibrils. Although the biosynthesis of collagen is well characterized, how cells deposit the fibrils in regular parallel arrays is not understood. Here we show that cells in the tendon mesenchyme are nearly cylindrical and are aligned side by side and end to end along the proximal-distal axis of the limb. Using three-dimensional reconstruction electron microscopy, we show that the cells have deep channels in their plasma membranes and contain bundles of parallel fibrils that are contiguous from one cell to another along the tendon axis. A combination of electron microscopy, microarray analysis, and immunofluorescence suggested that the cells are held together by cadherin-11-containing cell-cell junctions. Using a combination of RNA interference and electron microscopy, we showed that knockdown of cadherin-11 resulted in cell separation, loss of plasma membrane channels, and misalignment of the collagen fibrils in the ECM. Our results show that tendon formation in the developing limb requires precise regulation of cell shape via cadherin-11-mediated cell-cell junctions and coaxial alignment of plasma membrane channels in longitudinally stacked cells.


Subject(s)
Cadherins/metabolism , Cell Shape , Intercellular Junctions/metabolism , Tendons/growth & development , Animals , Cadherins/genetics , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Chick Embryo , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Intercellular Junctions/ultrastructure , Mice , Models, Anatomic , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Tendons/cytology , Tendons/ultrastructure
20.
Sci Rep ; 10(1): 5846, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246000

ABSTRACT

The parasitic nematode Trichuris trichiura is a significant burden on public health in developing countries, and currently available drugs exhibit a poor cure rate. Worms live within a specialised tunnel of host intestinal epithelial cells and have anterior-ventral projections of the cuticle termed "cuticular inflations", which are thought to be involved in host-parasite interactions. This work aimed to characterise structure and suggest a function of cuticular inflations in the most tractable and widely-used model of trichuriasis, Trichuris muris. Using scanning electron microscopy, we show for the first time that most cuticular inflations develop between the second and third larval moults. Correlative X-ray computed tomography (CT)-steered Serial Block Face Scanning Electron Microscopy (SBF-SEM) and transmission electron microscopy enabled ultrastructural imaging of cuticular inflations, and showed the presence of an additional, web-like layer of cuticle between the median and cortical layers of the inflation. Additionally, we characterised variation in inflation morphology, resolving debate as to the inflations' true shape in situ. Cells underlying the inflations had many mitochondria, and we highlight their potential capacity for active transport as an area for future investigation. Overall, insights from the powerful imaging techniques used provide an excellent basis for future study of cuticular inflation function.


Subject(s)
Trichuris/growth & development , Animals , Host-Parasite Interactions , Microscopy, Electron, Scanning , Tomography, X-Ray Computed , Trichuris/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL