Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nature ; 618(7964): 349-357, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258678

ABSTRACT

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Myelin Sheath , Plaque, Amyloid , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Myelin Sheath/metabolism , Myelin Sheath/pathology , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Axons/metabolism , Axons/pathology , Microglia/metabolism , Microglia/pathology , Single-Cell Gene Expression Analysis , Risk Factors , Disease Progression
2.
Neurobiol Dis ; 176: 105952, 2023 01.
Article in English | MEDLINE | ID: mdl-36493976

ABSTRACT

The glial cell of the peripheral nervous system (PNS), the Schwann cell (SC), counts among the most multifaceted cells of the body. During development, SCs secure neuronal survival and participate in axonal path finding. Simultaneously, they orchestrate the architectural set up of the developing nerves, including the blood vessels and the endo-, peri- and epineurial layers. Perinatally, in rodents, SCs radially sort and subsequently myelinate individual axons larger than 1 µm in diameter, while small calibre axons become organised in non-myelinating Remak bundles. SCs have a vital role in maintaining axonal health throughout life and several specialized SC types perform essential functions at specific locations, such as terminal SC at the neuromuscular junction (NMJ) or SC within cutaneous sensory end organs. In addition, neural crest derived satellite glia maintain a tight communication with the soma of sensory, sympathetic, and parasympathetic neurons and neural crest derivatives are furthermore an indispensable part of the enteric nervous system. The remarkable plasticity of SCs becomes evident in the context of a nerve injury, where SC transdifferentiate into intriguing repair cells, which orchestrate a regenerative response that promotes nerve repair. Indeed, the multiple adaptations of SCs are captivating, but remain often ill-resolved on the molecular level. Here, we summarize and discuss the knowns and unknowns of the vast array of functions that this single cell type can cover in peripheral nervous system development, maintenance, and repair.


Subject(s)
Peripheral Nerve Injuries , Schwann Cells , Humans , Schwann Cells/metabolism , Peripheral Nerves/metabolism , Axons/metabolism , Neurons/metabolism , Peripheral Nervous System/metabolism , Nerve Regeneration/physiology , Peripheral Nerve Injuries/metabolism
3.
Proc Natl Acad Sci U S A ; 117(17): 9466-9476, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32295886

ABSTRACT

Peripheral nerves contain axons and their enwrapping glia cells named Schwann cells (SCs) that are either myelinating (mySCs) or nonmyelinating (nmSCs). Our understanding of other cells in the peripheral nervous system (PNS) remains limited. Here, we provide an unbiased single cell transcriptomic characterization of the nondiseased rodent PNS. We identified and independently confirmed markers of previously underappreciated nmSCs and nerve-associated fibroblasts. We also found and characterized two distinct populations of nerve-resident homeostatic myeloid cells that transcriptionally differed from central nervous system microglia. In a model of chronic autoimmune neuritis, homeostatic myeloid cells were outnumbered by infiltrating lymphocytes which modulated the local cell-cell interactome and induced a specific transcriptional response in glia cells. This response was partially shared between the peripheral and central nervous system glia, indicating common immunological features across different parts of the nervous system. Our study thus identifies subtypes and cell-type markers of PNS cells and a partially conserved autoimmunity module induced in glia cells.


Subject(s)
Neurons/physiology , Peripheral Nerves/cytology , Animals , Autoimmune Diseases/metabolism , Biomarkers , Cell Communication , Cell Lineage , Gene Expression Regulation/physiology , Homeostasis , Humans , Leukocytes/physiology , Macrophages/physiology , Mice , Rats
4.
Glia ; 70(6): 1100-1116, 2022 06.
Article in English | MEDLINE | ID: mdl-35188681

ABSTRACT

We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.


Subject(s)
Charcot-Marie-Tooth Disease , Lactation , Animals , Cell Differentiation , Charcot-Marie-Tooth Disease/genetics , Female , Humans , Macrophages/metabolism , Mice , Peripheral Nerves/metabolism
5.
Development ; 146(21)2019 11 12.
Article in English | MEDLINE | ID: mdl-31719044

ABSTRACT

During the development of the peripheral nervous system, axons and myelinating Schwann cells form a unique symbiotic unit, which is realized by a finely tuned network of molecular signals and reciprocal interactions. The importance of this complex interplay becomes evident after injury or in diseases in which aspects of axo-glial interaction are perturbed. This Review focuses on the specific interdependence of axons and Schwann cells in peripheral nerve development that enables axonal outgrowth, Schwann cell lineage progression, radial sorting and, finally, formation and maintenance of the myelin sheath.


Subject(s)
Axons/physiology , Gene Expression Regulation, Developmental , Myelin Sheath/physiology , Neuroglia/physiology , Peripheral Nerves/embryology , Schwann Cells/physiology , Animals , Cell Differentiation , Cell Lineage , Cell Separation , Mice , Nerve Regeneration , Peripheral Nerves/physiology , Peripheral Nervous System , Rats , Signal Transduction
6.
Brain ; 143(5): 1383-1399, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32419025

ABSTRACT

Pelizaeus-Merzbacher disease is a fatal X-linked leukodystrophy caused by mutations in the PLP1 gene, which is expressed in the CNS by oligodendrocytes. Disease onset, symptoms and mortality span a broad spectrum depending on the nature of the mutation and thus the degree of CNS hypomyelination. In the absence of an effective treatment, direct cell transplantation into the CNS to restore myelin has been tested in animal models of severe forms of the disease with failure of developmental myelination, and more recently, in severely affected patients with early disease onset due to point mutations in the PLP1 gene, and absence of myelin by MRI. In patients with a PLP1 duplication mutation, the most common cause of Pelizaeus-Merzbacher disease, the pathology is poorly defined because of a paucity of autopsy material. To address this, we examined two elderly patients with duplication of PLP1 in whom the overall syndrome, including end-stage pathology, indicated a complex disease involving dysmyelination, demyelination and axonal degeneration. Using the corresponding Plp1 transgenic mouse model, we then tested the capacity of transplanted neural stem cells to restore myelin in the context of PLP overexpression. Although developmental myelination and axonal coverage by endogenous oligodendrocytes was extensive, as assessed using electron microscopy (n = 3 at each of four end points) and immunostaining (n = 3 at each of four end points), wild-type neural precursors, transplanted into the brains of the newborn mutants, were able to effectively compete and replace the defective myelin (n = 2 at each of four end points). These data demonstrate the potential of neural stem cell therapies to restore normal myelination and protect axons in patients with PLP1 gene duplication mutation and further, provide proof of principle for the benefits of stem cell transplantation for other fatal leukodystrophies with 'normal' developmental myelination.


Subject(s)
Brain/pathology , Disease Models, Animal , Neural Stem Cells/transplantation , Pelizaeus-Merzbacher Disease/pathology , Animals , Humans , Male , Mice, Transgenic , Mutation , Myelin Proteolipid Protein/genetics , Myelin Sheath/pathology , Pelizaeus-Merzbacher Disease/genetics
7.
Int J Legal Med ; 132(4): 1103-1109, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29299666

ABSTRACT

Immunohistochemistry (IHC) has become an integral part in forensic histopathology over the last decades. However, the underlying methods for IHC vary greatly depending on the institution, creating a lack of comparability. The aim of this study was to assess the optimal approach for different technical aspects of IHC, in order to improve and standardize this procedure. Therefore, qualitative results from manual and automatic IHC staining of brain samples were compared, as well as potential differences in suitability of common IHC glass slides. Further, possibilities of image digitalization and connected issues were investigated. In our study, automatic staining showed more consistent staining results, compared to manual staining procedures. Digitalization and digital post-processing facilitated direct analysis and analysis for reproducibility considerably. No differences were found for different commercially available microscopic glass slides regarding suitability of IHC brain researches, but a certain rate of tissue loss should be expected during the staining process.


Subject(s)
Forensic Pathology/methods , Immunohistochemistry/methods , Staining and Labeling/methods , Brain/pathology , Glial Fibrillary Acidic Protein , Humans , Image Processing, Computer-Assisted , Paraffin Embedding , Reproducibility of Results
8.
Am J Hum Genet ; 94(4): 533-46, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24680886

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is a severe hypomyelinating disease, characterized by ataxia, intellectual disability, epilepsy, and premature death. In the majority of cases, PMD is caused by duplication of PLP1 that is expressed in myelinating oligodendrocytes. Despite detailed knowledge of PLP1, there is presently no curative therapy for PMD. We used a Plp1 transgenic PMD mouse model to test the therapeutic effect of Lonaprisan, an antagonist of the nuclear progesterone receptor, in lowering Plp1 mRNA overexpression. We applied placebo-controlled Lonaprisan therapy to PMD mice for 10 weeks and performed the grid slip analysis to assess the clinical phenotype. Additionally, mRNA expression and protein accumulation as well as histological analysis of the central nervous system were performed. Although Plp1 mRNA levels are increased 1.8-fold in PMD mice compared to wild-type controls, daily Lonaprisan treatment reduced overexpression at the RNA level to about 1.5-fold, which was sufficient to significantly improve the poor motor phenotype. Electron microscopy confirmed a 25% increase in the number of myelinated axons in the corticospinal tract when compared to untreated PMD mice. Microarray analysis revealed the upregulation of proapoptotic genes in PMD mice that could be partially rescued by Lonaprisan treatment, which also reduced microgliosis, astrogliosis, and lymphocyte infiltration.


Subject(s)
Estrenes/therapeutic use , Hormone Antagonists/therapeutic use , Pelizaeus-Merzbacher Disease/drug therapy , Progesterone/antagonists & inhibitors , Animals , Disease Models, Animal , Estrenes/pharmacokinetics , Estrenes/pharmacology , Gene Expression Regulation/drug effects , Hormone Antagonists/pharmacokinetics , Hormone Antagonists/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Proteolipid Protein/genetics , Phenotype , RNA, Messenger/genetics
9.
Proc Natl Acad Sci U S A ; 109(10): 3973-8, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22355115

ABSTRACT

Glycogen synthase kinase 3ß (GSK3ß) inhibitors, especially the mood stabilizer lithium chloride, are also used as neuroprotective or anti-inflammatory agents. We studied the influence of LiCl on the remyelination of peripheral nerves. We showed that the treatment of adult mice with LiCl after facial nerve crush injury stimulated the expression of myelin genes, restored the myelin structure, and accelerated the recovery of whisker movements. LiCl treatment also promoted remyelination of the sciatic nerve after crush. We also demonstrated that peripheral myelin gene MPZ and PMP22 promoter activities, transcripts, and protein levels are stimulated by GSK3ß inhibitors (LiCl and SB216763) in Schwann cells as well as in sciatic and facial nerves. LiCl exerts its action in Schwann cells by increasing the amount of ß-catenin and provoking its nuclear localization. We showed by ChIP experiments that LiCl treatment drives ß-catenin to bind to T-cell factor/lymphoid-enhancer factor response elements identified in myelin genes. Taken together, our findings open perspectives in the treatment of nerve demyelination by administering GSK3ß inhibitors such as lithium.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Lithium Chloride/pharmacology , Myelin Sheath/chemistry , Peripheral Nerves/metabolism , Animals , Cell Nucleus/metabolism , Glycogen Synthase Kinase 3 beta , Male , Mice , Mice, Inbred C57BL , Myelin P0 Protein/metabolism , Peripheral Nerves/drug effects , Placebos , Proto-Oncogene Proteins c-akt/metabolism , Schwann Cells/metabolism , Sciatic Nerve/injuries , Signal Transduction
10.
Article in English | MEDLINE | ID: mdl-38199866

ABSTRACT

Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.


Subject(s)
Nerve Regeneration , Schwann Cells , Schwann Cells/physiology , Nerve Regeneration/physiology , Humans , Animals , Peripheral Nerves/physiology , Axons/physiology
11.
EMBO Mol Med ; 16(3): 616-640, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383802

ABSTRACT

Haplo-insufficiency of the gene encoding the myelin protein PMP22 leads to focal myelin overgrowth in the peripheral nervous system and hereditary neuropathy with liability to pressure palsies (HNPP). Conversely, duplication of PMP22 causes Charcot-Marie-Tooth disease type 1A (CMT1A), characterized by hypomyelination of medium to large caliber axons. The molecular mechanisms of abnormal myelin growth regulation by PMP22 have remained obscure. Here, we show in rodent models of HNPP and CMT1A that the PI3K/Akt/mTOR-pathway inhibiting phosphatase PTEN is correlated in abundance with PMP22 in peripheral nerves, without evidence for direct protein interactions. Indeed, treating DRG neuron/Schwann cell co-cultures from HNPP mice with PI3K/Akt/mTOR pathway inhibitors reduced focal hypermyelination. When we treated HNPP mice in vivo with the mTOR inhibitor Rapamycin, motor functions were improved, compound muscle amplitudes were increased and pathological tomacula in sciatic nerves were reduced. In contrast, we found Schwann cell dedifferentiation in CMT1A uncoupled from PI3K/Akt/mTOR, leaving partial PTEN ablation insufficient for disease amelioration. For HNPP, the development of PI3K/Akt/mTOR pathway inhibitors may be considered as the first treatment option for pressure palsies.


Subject(s)
Arthrogryposis , Charcot-Marie-Tooth Disease , Hereditary Sensory and Motor Neuropathy , Phosphatidylinositol 3-Kinases , Mice , Animals , Proto-Oncogene Proteins c-akt , Rodentia/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Myelin Proteins/genetics , Myelin Proteins/metabolism , TOR Serine-Threonine Kinases
12.
Brain ; 135(Pt 1): 72-87, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22189569

ABSTRACT

Charcot-Marie-Tooth disease is the most common inherited neuropathy and a duplication of the peripheral myelin protein 22 gene causes the most frequent subform Charcot-Marie-Tooth 1A. Patients develop a slowly progressive dysmyelinating and demyelinating peripheral neuropathy and distally pronounced muscle atrophy. The amount of axonal loss determines disease severity. Although patients share an identical monogenetic defect, the disease progression is strikingly variable and the impending disease course can not be predicted in individual patients. Despite promising experimental data, recent therapy trials have failed. Established clinical outcome measures are thought to be too insensitive to detect amelioration within trials. Surrogate biomarkers of disease severity in Charcot-Marie-Tooth 1A are thus urgently needed. Peripheral myelin protein 22 transgenic rats harbouring additional copies of the peripheral myelin protein 22 gene ('Charcot-Marie-Tooth rats'), which were kept on an outbred background mimic disease hallmarks and phenocopy the variable disease severity of patients with Charcot-Marie-Tooth 1A. Hence, we used the Charcot-Marie-Tooth rat to dissect prospective and surrogate markers of disease severity derived from sciatic nerve and skin tissue messenger RNA extracts. Gene set enrichment analysis of sciatic nerve transcriptomes revealed that dysregulation of lipid metabolism associated genes such as peroxisome proliferator-activated receptor gamma constitutes a modifier of present and future disease severity. Importantly, we directly validated disease severity markers from the Charcot-Marie-Tooth rats in 46 patients with Charcot-Marie-Tooth 1A. Our data suggest that the combination of age and cutaneous messenger RNA levels of glutathione S-transferase theta 2 and cathepsin A composes a strong indicator of disease severity in patients with Charcot-Marie-Tooth 1A, as quantified by the Charcot-Marie-Tooth Neuropathy Score. This translational approach, utilizing a transgenic animal model, demonstrates that transcriptional analysis of skin biopsy is suitable to identify biomarkers of Charcot-Marie-Tooth 1A.


Subject(s)
Axons/pathology , Charcot-Marie-Tooth Disease/pathology , Myelin Proteins/genetics , Sciatic Nerve/pathology , Animals , Axons/physiology , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , Glutathione Transferase/genetics , Myelin P0 Protein/genetics , Neural Conduction/physiology , PPAR gamma/genetics , Pain Measurement , Phenotype , Rats , Rats, Transgenic , Sciatic Nerve/physiopathology , Severity of Illness Index
13.
Nat Neurosci ; 26(7): 1218-1228, 2023 07.
Article in English | MEDLINE | ID: mdl-37386131

ABSTRACT

Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Animals , Humans , Myelin Sheath/metabolism , Axons/metabolism , Multiple Sclerosis/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Risk Factors
14.
Cell Metab ; 35(12): 2136-2152.e9, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37989315

ABSTRACT

The peripheral nervous system harbors a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate breakdown and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism to provide sufficient energy for successful nerve repair.


Subject(s)
Myelin Sheath , Peripheral Nerves , Myelin Sheath/metabolism , Neuroglia , Schwann Cells/metabolism , Nerve Regeneration/physiology
15.
Br Med Bull ; 102: 89-113, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22551516

ABSTRACT

INTRODUCTION OR BACKGROUND: Charcot-Marie-Tooth (CMT) disease represents a broad group of inherited motor and sensory neuropathies which can originate from various genetic aberrations, e.g. mutations, deletions and duplications. SOURCES OF DATA: We performed a literature review on murine animal models of CMT disease with regard to experimental therapeutic approaches. Hereby, we focussed on the demyelinating subforms of CMT (CMT1). PubMed items were CMT, animal model, demyelination and therapy. AREAS OF AGREEMENT: Patients affected by CMT suffer from slowly progressive, distally pronounced muscle atrophy caused by an axonal loss. The disease severity is highly variable and impairments may result in wheelchair boundness. No therapy is available yet. AREAS OF CONTROVERSY: Numerous rodent models for the various CMT subtypes are available today. The selection of the correct animal model for the specific CMT subtype provides an important prerequisite for the successful translation of experimental findings in patients. GROWING POINTS: Despite more than 20 years of remarkable progress in CMT research, the disease is still left untreatable. There is a growing number of experimental therapeutic strategies that may be translated into future clinical trials in patients with CMT. AREAS TIMELY FOR DEVELOPING RESEARCH: The slow disease progression and insensitive outcome measures hamper clinical therapy trials in CMT. Biomarkers may provide powerful tools to monitor therapeutic efficacy. Recently, we have shown that transcriptional profiling can be utilized to assess and predict the disease severity in a transgenic rat model and in affected humans.


Subject(s)
Charcot-Marie-Tooth Disease/therapy , Disease Models, Animal , Animals , Animals, Genetically Modified , Charcot-Marie-Tooth Disease/genetics , Genetic Predisposition to Disease , Mice , Molecular Targeted Therapy/methods , Rats
16.
Neurobiol Dis ; 42(1): 1-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21168501

ABSTRACT

Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy and a duplication of the peripheral myelin protein of 22 kDa (PMP22) gene causes the most frequent subform CMT1A. Clinical impairments are determined by the amount of axonal loss. Axons of the spontaneous mouse mutant Wallerian degeneration slow (Wlds) show markedly reduced degeneration following various types of injuries. Protection is conferred by a chimeric Wlds gene encoding an N-terminal part of ubiquitination factor Ube4b and full length nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1). Nmnat1 enzyme generates nicotinamide adenine dinucleotide (NAD) from nicotinamide mononucleotide. Here, in a Pmp22 transgenic animal model of Charcot-Marie-Tooth disease type 1A (CMT rat), the Wlds transgene reduced axonal loss and clinical impairments without altering demyelination. Furthermore, nicotinamide - substrate precursor of the Nmnat1 enzyme - transiently delayed posttraumatic axonal degeneration in an in vivo model of acute peripheral nerve injury, but to a lower extent than Wlds. In contrast, 8 weeks of nicotinamide treatment did not influence axonal loss or clinical manifestations in the CMT rat. Therefore, nicotinamide can partially substitute for the protective Wlds effect in acute traumatic, but not in chronic secondary axonal injury. Future studies are needed to develop axon protective therapy in CMT1A which may be combined with therapeutic strategies aimed at downregulation of toxic PMP22 overexpression.


Subject(s)
Axons/pathology , Charcot-Marie-Tooth Disease/genetics , Nerve Tissue Proteins/genetics , Neuroprotective Agents/therapeutic use , Niacinamide/therapeutic use , Sciatic Neuropathy/genetics , Wallerian Degeneration/genetics , Wallerian Degeneration/prevention & control , Animals , Axons/metabolism , Charcot-Marie-Tooth Disease/drug therapy , Charcot-Marie-Tooth Disease/pathology , Disease Models, Animal , Female , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Sciatic Neuropathy/complications , Sciatic Neuropathy/pathology , Wallerian Degeneration/pathology
17.
Dev Neurobiol ; 81(5): 490-506, 2021 07.
Article in English | MEDLINE | ID: mdl-32628805

ABSTRACT

Axons share a close relationship with Schwann cells, their glial partners in peripheral nerves. An intricate axo-glia network of signals and bioactive molecules regulates the major aspects of nerve development and normal functioning of the peripheral nervous system. Disruptions to these complex axo-glial interactions can have serious neurological consequences, as typically seen in injured nerves. Recent studies in inherited neuropathies have demonstrated that damage to one of the partners in this symbiotic unit ultimately leads to impairment of the other partner, emphasizing the bidirectional influence of axon to glia and glia to axon signaling in these diseases. After physical trauma to nerves, dramatic alterations in the architecture and signaling environment of peripheral nerves take place. Here, axons and Schwann cells respond adaptively to these perturbations and change the nature of their reciprocal interactions, thereby driving the remodeling and regeneration of peripheral nerves. In this review, we focus on the nature and importance of axon-glia interactions in injured nerves, both for the reshaping and repair of nerves after trauma, and in driving pathology in inherited peripheral neuropathies.


Subject(s)
Peripheral Nervous System Diseases , Axons/physiology , Humans , Nerve Regeneration , Neuroglia/physiology , Peripheral Nervous System , Schwann Cells/physiology
18.
J Med Case Rep ; 15(1): 14, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33461603

ABSTRACT

BACKGROUND: Leiomyosarcomas are rare malignant tumors which originate from smooth muscle cells and very seldom give rise to intracerebral metastases. Nearly all cases of intracranial metastases stem from leiomyosarcomas of the uterus. We present a 61-year-old Caucasian man who developed multiple intracranial and extracranial metastases from leiomyosarcoma of the right forearm, diagnosed and treated 9 years before the current presentation. CASE PRESENTATION: The Caucasian patient presented to the emergency department due to a progressive hemiparesis on the left side. Magnetic resonance imaging scans of the neurocranium showed multiple intracerebral masses with perifocal edema. One of these was located in the right parietal lobe, corresponding to the hemiparesis. The patient underwent microsurgical complete resection of the parietal mass and was subsequently subjected to further radiotherapy. Histopathological studies revealed metastasis of the former leiomyosarcoma. CONCLUSIONS: Leiomyosarcomas represent a rare entity of mesenchymal tumors. Intracerebral metastasis of these tumors is even less frequent. This case shows the importance of long-term follow-up in patients with leiomyosarcoma.


Subject(s)
Brain Neoplasms/secondary , Leiomyosarcoma/secondary , Soft Tissue Neoplasms/pathology , Spinal Neoplasms/secondary , Stomach Neoplasms/secondary , Brain Neoplasms/complications , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Cranial Irradiation , Forearm , Humans , Karnofsky Performance Status , Leiomyosarcoma/complications , Leiomyosarcoma/diagnostic imaging , Leiomyosarcoma/therapy , Magnetic Resonance Imaging , Male , Melena/etiology , Metastasectomy , Middle Aged , Neoplasm Recurrence, Local/surgery , Neurosurgical Procedures , Paresis/etiology , Pyloric Antrum , Radiotherapy , Sacrum , Soft Tissue Neoplasms/surgery , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/radiotherapy , Stomach Neoplasms/complications , Subcutaneous Tissue , Time Factors
19.
Neurogenetics ; 10(4): 275-87, 2009 10.
Article in English | MEDLINE | ID: mdl-19290556

ABSTRACT

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Amino Acid Substitution , Cell Cycle Proteins , Charcot-Marie-Tooth Disease/genetics , Mediator Complex , Myelin Proteins , Nuclear Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Amino Acid Sequence , Animals , Animals, Genetically Modified , Base Sequence , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Charcot-Marie-Tooth Disease/physiopathology , Costa Rica , DNA Mutational Analysis , Disease Models, Animal , Female , Gene Dosage , Genotype , Humans , Male , Mediator Complex/chemistry , Mediator Complex/genetics , Mediator Complex/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Myelin Proteins/genetics , Myelin Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pedigree , Protein Conformation , Rats
20.
Sci Rep ; 9(1): 11771, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417126

ABSTRACT

Knowledge on trauma survival time prior to death following a lethal traumatic brain injury (TBI) may be essential for legal purposes. Immunohistochemistry studies might allow to narrow down this survival interval. The biomarkers interleukin-6 (IL-6) and glial fibrillary acidic protein (GFAP) are well known in the clinical setting for their usability in TBI prediction. Here, both proteins were chosen in forensics to determine whether neuronal or glial expression in various brain regions may be associated with the cause of death and the survival time prior to death following TBI. IL-6 positive neurons, glial cells and GFAP positive astrocytes all concordantly increase with longer trauma survival time, with statistically significant changes being evident from three days post-TBI (p < 0.05) in the pericontusional zone, irrespective of its definite cortical localization. IL-6 staining in neurons increases significantly in the cerebellum after trauma, whereas increasing GFAP positivity is also detected in the cortex contralateral to the focal lesion. These systematic chronological changes in biomarkers of pericontusional neurons and glial cells allow for an estimation of trauma survival time. Higher numbers of IL-6 and GFAP-stained cells above threshold values in the pericontusional zone substantiate the existence of fatal traumatic changes in the brain with reasonable certainty.


Subject(s)
Astrocytes/metabolism , Brain Injuries, Traumatic/metabolism , Glial Fibrillary Acidic Protein/metabolism , Interleukin-6/metabolism , Neurons/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers , Brain/metabolism , Brain/pathology , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/mortality , Brain Injuries, Traumatic/pathology , Cell Death , Female , Gene Expression , Glial Fibrillary Acidic Protein/genetics , Humans , Immunohistochemistry , Interleukin-6/genetics , Male , Middle Aged , ROC Curve , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL