Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Energy Lett ; 8(2): 1273-1280, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-37941794

ABSTRACT

Achieving high energy density in all-solid-state lithium batteries will require the design of thick cathodes, and these will need to operate reversibly under normal use conditions. We use high-energy depth-profiling X-ray diffraction to measure the localized lithium content of Li1-xNi1/3Mn1/3Co1/3O2 (NMC111) through the thickness of 110 µm thick composite cathodes. The composite cathodes consisted of NMC111 of varying mass loadings mixed with argyrodite solid electrolyte Li6PS5Cl (LPSC). During cycling at C/10, substantial lithiation gradients developed, and varying the NMC111 loading altered the nature of these gradients. Microstructural analysis and cathode modeling showed this was due to high tortuosities in the cathodes. This was particularly true in the solid electrolyte phase, which experienced a marked increase in tortuosity factor during the initial charge. Our results demonstrate that current distributions are observed in sulfide-based composites and that these will be an important consideration for practical design of all-solid-state batteries.

2.
ACS Meas Sci Au ; 3(5): 344-354, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37877006

ABSTRACT

High-resolution X-ray computed tomography (CT) has become an invaluable tool in battery research for its ability to probe phase distributions in sealed samples. The Cartesian coordinates used in describing the CT image stack are not appropriate for understanding radial dependencies, like that seen in bobbin-type batteries. The most prominent of these bobbin-type batteries is alkaline Zn-MnO2, which dominates the primary battery market. To understand material radial dependencies within these batteries, a method is presented to approximate the Cartesian coordinates of CT data into pseudo-cylindrical coordinates. This is important because radial volume fractions are the output of computational battery models, and this will allow the correlation of a battery model to CT data. A selection of 10 anodes inside Zn-MnO2 AA batteries are used to demonstrate the method. For these, the pseudo-radius is defined as the relative distance in the anode between the central current collecting pin and the separator. Using these anodes, we validate that this method results in averaged one-dimensional material profiles that, when compared to other methods, show a better quantitative match to individual local slices of the anodes in the polar θ-direction. The other methods tested are methods that average to an absolute center point based on either the pin or the separator. The pseudo-cylindrical method also corrects for slight asymmetries observed in bobbin-type batteries because the pin is often slightly off-center and the separator often has a noncircular shape.

SELECTION OF CITATIONS
SEARCH DETAIL