Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nature ; 606(7914): 585-593, 2022 06.
Article in English | MEDLINE | ID: mdl-35483404

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Subject(s)
COVID-19 , Inflammasomes , Macrophages , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukin-18 , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pneumonia/virology , Pyroptosis , Receptors, IgG , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
2.
Nature ; 592(7852): 128-132, 2021 04.
Article in English | MEDLINE | ID: mdl-33536623

ABSTRACT

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of their expression of specific transcription factors and cytokines1. In the skin, disease-specific production of ILC3-associated cytokines interleukin (IL)-17 and IL-22 in response to IL-23 signalling contributes to dermal inflammation in psoriasis. However, it is not known whether this response is initiated by pre-committed ILCs or by cell-state transitions. Here we show that the induction of psoriasis in mice by IL-23 or imiquimod reconfigures a spectrum of skin ILCs, which converge on a pathogenic ILC3-like state. Tissue-resident ILCs were necessary and sufficient, in the absence of circulatory ILCs, to drive pathology. Single-cell RNA-sequencing (scRNA-seq) profiles of skin ILCs along a time course of psoriatic inflammation formed a dense transcriptional continuum-even at steady state-reflecting fluid ILC states, including a naive or quiescent-like state and an ILC2 effector state. Upon disease induction, the continuum shifted rapidly to span a mixed, ILC3-like subset also expressing cytokines characteristic of ILC2s, which we inferred as arising through multiple trajectories. We confirmed the transition potential of quiescent-like and ILC2 states using in vitro experiments, single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and in vivo fate mapping. Our results highlight the range and flexibility of skin ILC responses, suggesting that immune activities primed in healthy tissues dynamically adapt to provocations and, left unchecked, drive pathological remodelling.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Lymphocytes/pathology , Psoriasis/immunology , Psoriasis/pathology , Skin/immunology , Skin/pathology , Animals , Cell Differentiation , Cell Lineage , Chromatin/genetics , Disease Models, Animal , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-23/immunology , Latent Class Analysis , Lymphocytes/classification , Male , Mice , Psoriasis/genetics , RNA, Small Cytoplasmic/genetics , Reproducibility of Results , Time Factors
3.
Immunity ; 44(1): 155-166, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26750312

ABSTRACT

Exposure to inhaled allergens generates T helper 2 (Th2) CD4(+) T cells that contribute to episodes of inflammation associated with asthma. Little is known about allergen-specific Th2 memory cells and their contribution to airway inflammation. We generated reagents to understand how endogenous CD4(+) T cells specific for a house dust mite (HDM) allergen form and function. After allergen exposure, HDM-specific memory cells persisted as central memory cells in the lymphoid organs and tissue-resident memory cells in the lung. Experimental blockade of lymphocyte migration demonstrated that lung-resident cells were sufficient to induce airway hyper-responsiveness, which depended upon CD4(+) T cells. Investigation into the differentiation of pathogenic Trm cells revealed that interleukin-2 (IL-2) signaling was required for residency and directed a program of tissue homing migrational cues. These studies thus identify IL-2-dependent resident Th2 memory cells as drivers of lung allergic responses.


Subject(s)
Asthma/immunology , Immunologic Memory/immunology , Interleukin-2/immunology , Lung/immunology , Th2 Cells/immunology , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Cell Differentiation/immunology , Cell Separation , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyroglyphidae/immunology
5.
Nature ; 571(7765): 403-407, 2019 07.
Article in English | MEDLINE | ID: mdl-31217581

ABSTRACT

Activated CD4 T cells proliferate rapidly and remodel epigenetically before exiting the cell cycle and engaging acquired effector functions. Metabolic reprogramming from the naive state is required throughout these phases of activation1. In CD4 T cells, T-cell-receptor ligation-along with co-stimulatory and cytokine signals-induces a glycolytic anabolic program that is required for biomass generation, rapid proliferation and effector function2. CD4 T cell differentiation (proliferation and epigenetic remodelling) and function are orchestrated coordinately by signal transduction and transcriptional remodelling. However, it remains unclear whether these processes are regulated independently of one another by cellular biochemical composition. Here we demonstrate that distinct modes of mitochondrial metabolism support differentiation and effector functions of mouse T helper 1 (TH1) cells by biochemically uncoupling these two processes. We find that the tricarboxylic acid cycle is required for the terminal effector function of TH1 cells through succinate dehydrogenase (complex II), but that the activity of succinate dehydrogenase suppresses TH1 cell proliferation and histone acetylation. By contrast, we show that complex I of the electron transport chain, the malate-aspartate shuttle and mitochondrial citrate export are required to maintain synthesis of aspartate, which is necessary for the proliferation of T helper cells. Furthermore, we find that mitochondrial citrate export and the malate-aspartate shuttle promote histone acetylation, and specifically regulate the expression of genes involved in T cell activation. Combining genetic, pharmacological and metabolomics approaches, we demonstrate that the differentiation and terminal effector functions of T helper cells are biochemically uncoupled. These findings support a model in which the malate-aspartate shuttle, mitochondrial citrate export and complex I supply the substrates needed for proliferation and epigenetic remodelling early during T cell activation, whereas complex II consumes the substrates of these pathways, which antagonizes differentiation and enforces terminal effector function. Our data suggest that transcriptional programming acts together with a parallel biochemical network to enforce cell state.


Subject(s)
Cell Differentiation , Mitochondria/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Acetylation , Animals , Aspartic Acid/metabolism , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Citric Acid/metabolism , Citric Acid Cycle , Electron Transport , Female , Histones/metabolism , Humans , Lymphocyte Activation/genetics , Malates/metabolism , Male , Mice , Succinate Dehydrogenase/metabolism , Th1 Cells/metabolism , Transcription, Genetic
6.
Nature ; 573(7772): 69-74, 2019 09.
Article in English | MEDLINE | ID: mdl-31435009

ABSTRACT

Direct recognition of invading pathogens by innate immune cells is a critical driver of the inflammatory response. However, cells of the innate immune system can also sense their local microenvironment and respond to physiological fluctuations in temperature, pH, oxygen and nutrient availability, which are altered during inflammation. Although cells of the immune system experience force and pressure throughout their life cycle, little is known about how these mechanical processes regulate the immune response. Here we show that cyclical hydrostatic pressure, similar to that experienced by immune cells in the lung, initiates an inflammatory response via the mechanically activated ion channel PIEZO1. Mice lacking PIEZO1 in innate immune cells showed ablated pulmonary inflammation in the context of bacterial infection or fibrotic autoinflammation. Our results reveal an environmental sensory axis that stimulates innate immune cells to mount an inflammatory response, and demonstrate a physiological role for PIEZO1 and mechanosensation in immunity.


Subject(s)
Hydrostatic Pressure , Immunity, Innate , Ion Channels/metabolism , Mechanotransduction, Cellular/immunology , Animals , Endothelin-1/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , JNK Mitogen-Activated Protein Kinases/metabolism , Lung/immunology , Lung/metabolism , Lung/microbiology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Signal Transduction
8.
Nature ; 564(7736): 434-438, 2018 12.
Article in English | MEDLINE | ID: mdl-30542152

ABSTRACT

The annotation of the mammalian protein-coding genome is incomplete. Arbitrary size restriction of open reading frames (ORFs) and the absolute requirement for a methionine codon as the sole initiator of translation have constrained the identification of potentially important transcripts with non-canonical protein-coding potential1,2. Here, using unbiased transcriptomic approaches in macrophages that respond to bacterial infection, we show that ribosomes associate with a large number of RNAs that were previously annotated as 'non-protein coding'. Although the idea that such non-canonical ORFs can encode functional proteins is controversial3,4, we identify a range of short and non-ATG-initiated ORFs that can generate stable and spatially distinct proteins. Notably, we show that the translation of a new ORF 'hidden' within the long non-coding RNA Aw112010 is essential for the orchestration of mucosal immunity during both bacterial infection and colitis. This work expands our interpretation of the protein-coding genome and demonstrates that proteinaceous products generated from non-canonical ORFs are crucial for the immune response in vivo. We therefore propose that the misannotation of non-canonical ORF-containing genes as non-coding RNAs may obscure the essential role of a multitude of previously undiscovered protein-coding genes in immunity and disease.


Subject(s)
Immunity, Mucosal/genetics , Open Reading Frames/genetics , Protein Biosynthesis , RNA, Long Noncoding/genetics , Animals , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Immunity, Mucosal/drug effects , Interleukin-12/biosynthesis , Lipopolysaccharides/pharmacology , Macrophages/immunology , Macrophages/metabolism , Mice , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , RNA, Long Noncoding/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Salmonella typhimurium/immunology , Transcriptome/drug effects , Transcriptome/genetics
9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33446502

ABSTRACT

Haematopoiesis relies on tightly controlled gene expression patterns as development proceeds through a series of progenitors. While the regulation of hematopoietic development has been well studied, the role of noncoding elements in this critical process is a developing field. In particular, the discovery of new regulators of lymphopoiesis could have important implications for our understanding of the adaptive immune system and disease. Here we elucidate how a noncoding element is capable of regulating a broadly expressed transcription factor, Ikaros, in a lymphoid lineage-specific manner, such that it imbues Ikaros with the ability to specify the lymphoid lineage over alternate fates. Deletion of the Daedalus locus, which is proximal to Ikaros, led to a severe reduction in early lymphoid progenitors, exerting control over the earliest fate decisions during lymphoid lineage commitment. Daedalus locus deletion led to alterations in Ikaros isoform expression and a significant reduction in Ikaros protein. The Daedalus locus may function through direct DNA interaction as Hi-C analysis demonstrated an interaction between the two loci. Finally, we identify an Ikaros-regulated erythroid-lymphoid checkpoint that is governed by Daedalus in a lymphoid-lineage-specific manner. Daedalus appears to act as a gatekeeper of Ikaros's broad lineage-specifying functions, selectively stabilizing Ikaros activity in the lymphoid lineage and permitting diversion to the erythroid fate in its absence. These findings represent a key illustration of how a transcription factor with broad lineage expression must work in concert with noncoding elements to orchestrate hematopoietic lineage commitment.


Subject(s)
Hematopoiesis/genetics , Ikaros Transcription Factor/genetics , Lymphopoiesis/genetics , RNA, Untranslated/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , DNA-Binding Proteins/genetics , Gene Deletion , Gene Expression Regulation, Developmental/genetics , Mice
10.
J Immunol ; 204(3): 498-509, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31882518

ABSTRACT

Upon Ag exposure, naive B cells expressing BCR able to bind Ag can undergo robust proliferation and differentiation that can result in the production of Ab-secreting and memory B cells. The factors determining whether an individual naive B cell will proliferate following Ag encounter remains unclear. In this study, we found that polyclonal naive murine B cell populations specific for a variety of foreign Ags express high levels of the orphan nuclear receptor Nur77, which is known to be upregulated downstream of BCR signaling as a result of cross-reactivity with self-antigens in vivo. Similarly, a fraction of naive human B cells specific for clinically-relevant Ags derived from respiratory syncytial virus and HIV-1 also exhibited an IgMLOW IgD+ phenotype, which is associated with self-antigen cross-reactivity. Functionally, naive B cells expressing moderate levels of Nur77 are most likely to proliferate in vivo following Ag injection. Together, our data indicate that BCR cross-reactivity with self-antigen is a common feature of populations of naive B cells specific for foreign Ags and a moderate level of cross-reactivity primes individual cells for optimal proliferative responses following Ag exposure.


Subject(s)
Autoantigens/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Cross Reactions/immunology , Receptors, Antigen, B-Cell/metabolism , Animals , Antibody Formation , Cell Differentiation , Cells, Cultured , Immunologic Memory , Lymphocyte Activation , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, B-Cell/genetics
11.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798553

ABSTRACT

Lymphocyte activation involves a transition from quiescence and associated catabolic metabolism to a metabolic state with noted similarities to cancer cells such as heavy reliance on aerobic glycolysis for energy demands and increased nutrient requirements for biomass accumulation and cell division 1-3 . Following antigen receptor ligation, lymphocytes require spatiotemporally distinct "second signals". These include costimulatory receptor or cytokine signaling, which engage discrete programs that often involve remodeling of organelles and increased nutrient uptake or synthesis to meet changing biochemical demands 4-6 . One such signaling molecule, IL-4, is a highly pleiotropic cytokine that was first identified as a B cell co-mitogen over 30 years ago 7 . However, how IL-4 signaling mechanistically supports B cell proliferation is incompletely understood. Here, using single cell RNA sequencing we find that the cholesterol biosynthetic program is transcriptionally upregulated following IL-4 signaling during the early B cell response to influenza virus infection, and is required for B cell activation in vivo . By limiting lipid availability in vitro , we determine cholesterol to be essential for B cells to expand their endoplasmic reticulum, progress through cell cycle, and proliferate. In sum, we demonstrate that the well-known ability of IL-4 to act as a B cell growth factor is through a previously unknown rewiring of specific lipid anabolic programs, relieving sensitivity of cells to environmental nutrient availability.

12.
J Clin Invest ; 133(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37079384

ABSTRACT

Herpes simplex virus type 2 (HSV-2) coinfection is associated with increased HIV-1 viral loads and expanded tissue reservoirs, but the mechanisms are not well defined. HSV-2 recurrences result in an influx of activated CD4+ T cells to sites of viral replication and an increase in activated CD4+ T cells in peripheral blood. We hypothesized that HSV-2 induces changes in these cells that facilitate HIV-1 reactivation and replication and tested this hypothesis in human CD4+ T cells and 2D10 cells, a model of HIV-1 latency. HSV-2 promoted latency reversal in HSV-2-infected and bystander 2D10 cells. Bulk and single-cell RNA-Seq studies of activated primary human CD4+ T cells identified decreased expression of HIV-1 restriction factors and increased expression of transcripts including MALAT1 that could drive HIV replication in both the HSV-2-infected and bystander cells. Transfection of 2D10 cells with VP16, an HSV-2 protein that regulates transcription, significantly upregulated MALAT1 expression, decreased trimethylation of lysine 27 on histone H3 protein, and triggered HIV latency reversal. Knockout of MALAT1 from 2D10 cells abrogated the response to VP16 and reduced the response to HSV-2 infection. These results demonstrate that HSV-2 contributes to HIV-1 reactivation through diverse mechanisms, including upregulation of MALAT1 to release epigenetic silencing.


Subject(s)
HIV Infections , RNA, Long Noncoding , Humans , Herpesvirus 2, Human/genetics , CD4-Positive T-Lymphocytes , RNA, Long Noncoding/genetics , Up-Regulation , Etoposide , HIV Infections/genetics , Virus Latency
13.
Proc Mach Learn Res ; 196: 67-78, 2022 Jul.
Article in English | MEDLINE | ID: mdl-37159759

ABSTRACT

The manifold scattering transform is a deep feature extractor for data defined on a Riemannian manifold. It is one of the first examples of extending convolutional neural network-like operators to general manifolds. The initial work on this model focused primarily on its theoretical stability and invariance properties but did not provide methods for its numerical implementation except in the case of two-dimensional surfaces with predefined meshes. In this work, we present practical schemes, based on the theory of diffusion maps, for implementing the manifold scattering transform to datasets arising in naturalistic systems, such as single cell genetics, where the data is a high-dimensional point cloud modeled as lying on a low-dimensional manifold. We show that our methods are effective for signal classification and manifold classification tasks.

14.
bioRxiv ; 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34611663

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA, and sustained interferon (IFN) response all of which are recapitulated and required for pathology in the SARS-CoV-2 infected MISTRG6-hACE2 humanized mouse model of COVID-19 with a human immune system 1-20 . Blocking either viral replication with Remdesivir 21-23 or the downstream IFN stimulated cascade with anti-IFNAR2 in vivo in the chronic stages of disease attenuated the overactive immune-inflammatory response, especially inflammatory macrophages. Here, we show SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release IL-1 and IL-18 and undergo pyroptosis thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and its accompanying inflammatory response is necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Remarkably, this same blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 by production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.

15.
Sci Transl Med ; 12(538)2020 04 08.
Article in English | MEDLINE | ID: mdl-32269165

ABSTRACT

The kidney is a frequent target of autoimmune injury, including in systemic lupus erythematosus; however, how immune cells adapt to kidney's unique environment and contribute to tissue damage is unknown. We found that renal tissue, which normally has low oxygen tension, becomes more hypoxic in lupus nephritis. In the injured mouse tissue, renal-infiltrating CD4+ and CD8+ T cells express hypoxia-inducible factor-1 (HIF-1), which alters their cellular metabolism and prevents their apoptosis in hypoxia. HIF-1-dependent gene-regulated pathways were also up-regulated in renal-infiltrating T cells in human lupus nephritis. Perturbation of these environmental adaptations by selective HIF-1 blockade inhibited infiltrating T cells and reversed tissue hypoxia and injury in murine models of lupus. The results suggest that targeting HIF-1 might be effective for treating renal injury in autoimmune diseases.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Animals , CD8-Positive T-Lymphocytes , Hypoxia , Kidney , Mice
16.
J Exp Med ; 216(10): 2331-2347, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31345930

ABSTRACT

Many tested vaccines fail to provide protection against disease despite the induction of antibodies that bind the pathogen of interest. In light of this, there is much interest in rationally designed subunit vaccines that direct the antibody response to protective epitopes. Here, we produced a panel of anti-idiotype antibodies able to specifically recognize the inferred germline version of the human immunodeficiency virus 1 (HIV-1) broadly neutralizing antibody b12 (iglb12). We determined the crystal structure of two anti-idiotypes in complex with iglb12 and used these anti-idiotypes to identify rare naive human B cells expressing B cell receptors with similarity to iglb12. Immunization with a multimerized version of this anti-idiotype induced the proliferation of transgenic murine B cells expressing the iglb12 heavy chain in vivo, despite the presence of deletion and anergy within this population. Together, our data indicate that anti-idiotypes are a valuable tool for the study and induction of potentially protective antibodies.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , Precursor Cells, B-Lymphoid/immunology , Adult , Animals , Female , HIV Infections/genetics , HIV-1/genetics , Humans , Male , Mice , Mice, Transgenic
17.
Science ; 347(6223): 784-7, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25636798

ABSTRACT

When exposed to antigens, naïve B cells differentiate into different types of effector cells: antibody-producing plasma cells, germinal center cells, or memory cells. Whether an individual naïve B cell can produce all of these different cell fates remains unclear. Using a limiting dilution approach, we found that many individual naïve B cells produced only one type of effector cell subset, whereas others produced all subsets. The capacity to differentiate into multiple subsets was a characteristic of clonal populations that divided many times and resisted apoptosis, but was independent of isotype switching. Antigen receptor affinity also influenced effector cell differentiation. These findings suggest that diverse effector cell types arise in the primary immune response as a result of heterogeneity in responses by individual naïve B cells.


Subject(s)
Antibody-Producing Cells/immunology , Apoptosis/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Immunity, Humoral , Animals , Antigens/immunology , Cell Differentiation , Immunoglobulin Class Switching , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL