Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Mol Cell ; 81(17): 3445-3446, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34478652

ABSTRACT

In this issue of Molecular Cell, Cao et al. (2021) report that AML cells are specifically addicted to an IRF8-MEF2D gene expression network. Furthermore, they identify a chromatin reader, ZMYND8, as the upstream regulator of the IRF8-MEF2D program whose activity is critical for AML cell survival.


Subject(s)
Leukemia, Myeloid, Acute , Tumor Suppressor Proteins , Chromatin , Humans , Interferon Regulatory Factors/genetics , Leukemia, Myeloid, Acute/genetics , Tumor Suppressor Proteins/genetics
4.
Blood ; 143(25): 2571-2587, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38639475

ABSTRACT

ABSTRACT: From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.


Subject(s)
Hematopoiesis , Heparan Sulfate Proteoglycans , Heparitin Sulfate , Humans , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology
5.
Nature ; 583(7816): 431-436, 2020 07.
Article in English | MEDLINE | ID: mdl-32581360

ABSTRACT

Molecular noise is a natural phenomenon that is inherent to all biological systems1,2. How stochastic processes give rise to the robust outcomes that support tissue homeostasis remains unclear. Here we use single-molecule RNA fluorescent in situ hybridization (smFISH) on mouse stem cells derived from haematopoietic tissue to measure the transcription dynamics of three key genes that encode transcription factors: PU.1 (also known as Spi1), Gata1 and Gata2. We find that infrequent, stochastic bursts of transcription result in the co-expression of these antagonistic transcription factors in the majority of haematopoietic stem and progenitor cells. Moreover, by pairing smFISH with time-lapse microscopy and the analysis of pedigrees, we find that although individual stem-cell clones produce descendants that are in transcriptionally related states-akin to a transcriptional priming phenomenon-the underlying transition dynamics between states are best captured by stochastic and reversible models. As such, a stochastic process can produce cellular behaviours that may be incorrectly inferred to have arisen from deterministic dynamics. We propose a model whereby the intrinsic stochasticity of gene expression facilitates, rather than impedes, the concomitant maintenance of transcriptional plasticity and stem cell robustness.


Subject(s)
Adult Stem Cells/metabolism , Gene Expression Regulation , Single Molecule Imaging , Transcription, Genetic/genetics , Adult Stem Cells/cytology , Animals , Cells, Cultured , Clone Cells/cytology , Clone Cells/metabolism , Female , GATA1 Transcription Factor/genetics , GATA2 Transcription Factor/genetics , Gene Regulatory Networks , In Situ Hybridization, Fluorescence , Male , Mice , Mice, Inbred C57BL , Pedigree , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stochastic Processes , Trans-Activators/genetics
6.
Mol Cell ; 69(5): 729-743.e7, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29499131

ABSTRACT

MCL-1 is a BCL-2 family protein implicated in the development and chemoresistance of human cancer. Unlike its anti-apoptotic homologs, Mcl-1 deletion has profound physiologic consequences, indicative of a broader role in homeostasis. We report that the BCL-2 homology 3 (BH3) α helix of MCL-1 can directly engage very long-chain acyl-CoA dehydrogenase (VLCAD), a key enzyme of the mitochondrial fatty acid ß-oxidation (FAO) pathway. Proteomic analysis confirmed that the mitochondrial matrix isoform of MCL-1 (MCL-1Matrix) interacts with VLCAD. Mcl-1 deletion, or eliminating MCL-1Matrix alone, selectively deregulated long-chain FAO, causing increased flux through the pathway in response to nutrient deprivation. Transient elevation in MCL-1 upon serum withdrawal, a striking increase in MCL-1 BH3/VLCAD interaction upon palmitic acid titration, and direct modulation of enzymatic activity by the MCL-1 BH3 α helix are consistent with dynamic regulation. Thus, the MCL-1 BH3 interaction with VLCAD revealed a separable, gain-of-function role for MCL-1 in the regulation of lipid metabolism.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Lipid Metabolism/physiology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Palmitic Acid/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/genetics , Animals , Cell Line , Mice , Mice, Knockout , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Oxidation-Reduction , Protein Structure, Secondary
7.
Nat Immunol ; 14(5): 437-45, 2013 May.
Article in English | MEDLINE | ID: mdl-23563689

ABSTRACT

How hematopoietic stem cells (HSCs) coordinate the regulation of opposing cellular mechanisms such as self-renewal and differentiation commitment remains unclear. Here we identified the transcription factor and chromatin remodeler Satb1 as a critical regulator of HSC fate. HSCs lacking Satb1 had defective self-renewal, were less quiescent and showed accelerated lineage commitment, which resulted in progressive depletion of functional HSCs. The enhanced commitment was caused by less symmetric self-renewal and more symmetric differentiation divisions of Satb1-deficient HSCs. Satb1 simultaneously repressed sets of genes encoding molecules involved in HSC activation and cellular polarity, including Numb and Myc, which encode two key factors for the specification of stem-cell fate. Thus, Satb1 is a regulator that promotes HSC quiescence and represses lineage commitment.


Subject(s)
Hematopoietic Stem Cells/physiology , Matrix Attachment Region Binding Proteins/metabolism , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Polarity/genetics , Cell Survival/genetics , Cells, Cultured , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation, Developmental/genetics , Matrix Attachment Region Binding Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
8.
Nucleic Acids Res ; 50(6): 3169-3189, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35150568

ABSTRACT

Tet enzymes (Tet1/2/3) oxidize 5-methylcytosine to promote DNA demethylation and partner with chromatin modifiers to regulate gene expression. Tet1 is highly expressed in embryonic stem cells (ESCs), but its enzymatic and non-enzymatic roles in gene regulation are not dissected. We have generated Tet1 catalytically inactive (Tet1m/m) and knockout (Tet1-/-) ESCs and mice to study these functions. Loss of Tet1, but not loss of its catalytic activity, caused aberrant upregulation of bivalent (H3K4me3+; H3K27me3+) developmental genes, leading to defects in differentiation. Wild-type and catalytic-mutant Tet1 occupied similar genomic loci which overlapped with H3K27 tri-methyltransferase PRC2 and the deacetylase complex Sin3a at promoters of bivalent genes and with the helicase Chd4 at active genes. Loss of Tet1, but not loss of its catalytic activity, impaired enrichment of PRC2 and Sin3a at bivalent promoters leading to reduced H3K27 trimethylation and deacetylation, respectively, in absence of any changes in DNA methylation. Tet1-/-, but not Tet1m/m, embryos expressed higher levels of Gata6 and were developmentally delayed. Thus, the critical functions of Tet1 in ESCs and early development are mediated through its non-catalytic roles in regulating H3K27 modifications to silence developmental genes, and are more important than its catalytic functions in DNA demethylation.


Subject(s)
DNA-Binding Proteins , Dioxygenases , Embryonic Stem Cells , Proto-Oncogene Proteins , Animals , Cell Differentiation/genetics , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Embryonic Stem Cells/metabolism , Mice , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
9.
Bioinformatics ; 38(16): 4036-4038, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35771633

ABSTRACT

SUMMARY: The functional sub-string(s) of a biopolymer sequence defines the specificity of its interaction with other biomolecules and is often referred to as motifs. Computational algorithms and software have been broadly developed for finding such motifs in sequences in which the individual elements are single characters, such as those in DNA and protein sequences. However, there are more complex scenarios where the motifs exist in non-single-letter contexts, e.g. preferred patterns of chemical modifications on proteins, DNAs, RNAs or polysaccharides. To search for those motifs, we describe a new method that converts the modified sequence elements to representative single-letter codes and then uses a modified Gibbs-sampling algorithm to define the position specific scoring matrix representing the motif(s). As a proof of principle, we describe the implementation and application of an R package for discovering heparan sulfate (HS) motifs in glycan sequences, which are important in regulating protein-protein interactions. This software can be valuable for analyzing high-throughput glycoprotein binding data using microarrays with HS oligosaccharides or other biological polymers. AVAILABILITY AND IMPLEMENTATION: HSMotifDiscover is freely available as an open source R package released under an MIT license at https://github.com/bioinfoDZ/HSMotifDiscover and also available in the form of an app at https://hsmotifdiscover.shinyapps.io/HSMotifDiscover_ShinyApp/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Software , Proteins/chemistry , Amino Acid Sequence , DNA/chemistry
10.
Blood ; 138(8): 625-636, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34436525

ABSTRACT

Nongenetic heterogeneity, or gene expression stochasticity, is an important source of variability in biological systems. With the advent and improvement of single molecule resolution technologies, it has been shown that transcription dynamics and resultant transcript number fluctuations generate significant cell-to-cell variability that has important biological effects and may contribute substantially to both tissue homeostasis and disease. In this respect, the pathophysiology of stem cell-derived malignancies such as acute myeloid leukemia and myelodysplastic syndromes, which has historically been studied at the ensemble level, may require reevaluation. To that end, it is our aim in this review to highlight the results of recent single-molecule, biophysical, and systems studies of gene expression dynamics, with the explicit purpose of demonstrating how the insights from these basic science studies may help inform and progress the field of leukemia biology and, ultimately, research into novel therapies.


Subject(s)
Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/therapy
11.
Blood ; 137(8): 1013-1018, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33275656

ABSTRACT

Hematological malignancies are an aggregate of diverse populations of cells that arise following a complex process of clonal evolution and selection. Recent approaches have facilitated the study of clonal populations and their evolution over time across multiple phenotypic cell populations. In this review, we present current concepts on the role of clonal evolution in leukemic initiation, disease progression, and relapse. We highlight recent advances and unanswered questions about the contribution of the hematopoietic stem cell population to these processes.


Subject(s)
Carcinogenesis/pathology , Hematopoietic Stem Cells/pathology , Leukemia/pathology , Neoplastic Stem Cells/pathology , Animals , Carcinogenesis/genetics , Clonal Evolution , Disease Progression , Hematopoietic Stem Cells/metabolism , Humans , Leukemia/genetics , Neoplastic Stem Cells/metabolism
12.
Proc Natl Acad Sci U S A ; 117(25): 14251-14258, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513732

ABSTRACT

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Repetitive Sequences, Nucleic Acid/physiology , Animals , Epigenomics , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Methylation , Methyltransferases/metabolism , Mice , Mouse Embryonic Stem Cells/metabolism , Repressor Proteins/metabolism
13.
Proc Natl Acad Sci U S A ; 116(36): 17841-17847, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31431533

ABSTRACT

Pu.1 is an ETS family transcription factor (TF) that plays critical roles in erythroid progenitors by promoting proliferation and blocking terminal differentiation. However, the mechanisms controlling expression and down-regulation of Pu.1 during early erythropoiesis have not been defined. In this study, we identify the actions of Runx1 and Pu.1 itself at the Pu.1 gene Upstream Regulatory Element (URE) as major regulators of Pu.1 expression in Burst-Forming Unit erythrocytes (BFUe). During early erythropoiesis, Runx1 and Pu.1 levels decline, and chromatin accessibility at the URE is lost. Ectopic expression of Runx1 or Pu.1, both of which bind the URE, prevents Pu.1 down-regulation and blocks terminal erythroid differentiation, resulting in extensive ex vivo proliferation and immortalization of erythroid progenitors. Ectopic expression of Runx1 in BFUe lacking a URE fails to block terminal erythroid differentiation. Thus, Runx1, acting at the URE, and Pu.1 itself directly regulate Pu.1 levels in erythroid cells, and loss of both factors is critical for Pu.1 down-regulation during terminal differentiation. The molecular mechanism of URE inactivation in erythroid cells through loss of TF binding represents a distinct pattern of Pu.1 regulation from those described in other hematopoietic cell types such as T cells which down-regulate Pu.1 through active repression. The importance of down-regulation of Runx1 and Pu.1 in erythropoiesis is further supported by genome-wide analyses showing that their DNA-binding motifs are highly overrepresented in regions that lose chromatin accessibility during early erythroid development.


Subject(s)
Cell Differentiation/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Gene Expression Regulation , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Animals , Chromatin/genetics , Chromatin/metabolism , Erythropoiesis/genetics , Mice , RAW 264.7 Cells , Response Elements , Transcription, Genetic
14.
Genome Res ; 27(11): 1830-1842, 2017 11.
Article in English | MEDLINE | ID: mdl-28986391

ABSTRACT

Transcriptional deregulation of oncogenic pathways is a hallmark of cancer and can be due to epigenetic alterations. 5-Hydroxymethylcytosine (5-hmC) is an epigenetic modification that has not been studied in pancreatic cancer. Genome-wide analysis of 5-hmC-enriched loci with hmC-seal was conducted in a cohort of low-passage pancreatic cancer cell lines, primary patient-derived xenografts, and pancreatic controls and revealed strikingly altered patterns in neoplastic tissues. Differentially hydroxymethylated regions preferentially affected known regulatory regions of the genome, specifically overlapping with known H3K4me1 enhancers. Furthermore, base pair resolution analysis of cytosine methylation and hydroxymethylation with oxidative bisulfite sequencing was conducted and correlated with chromatin accessibility by ATAC-seq and gene expression by RNA-seq in pancreatic cancer and control samples. 5-hmC was specifically enriched at open regions of chromatin, and gain of 5-hmC was correlated with up-regulation of the cognate transcripts, including many oncogenic pathways implicated in pancreatic neoplasia, such as MYC, KRAS, VEGFA, and BRD4 Specifically, BRD4 was overexpressed and acquired 5-hmC at enhancer regions in the majority of neoplastic samples. Functionally, acquisition of 5-hmC at BRD4 promoter was associated with increase in transcript expression in reporter assays and primary samples. Furthermore, blockade of BRD4 inhibited pancreatic cancer growth in vivo. In summary, redistribution of 5-hmC and preferential enrichment at oncogenic enhancers is a novel regulatory mechanism in human pancreatic cancer.


Subject(s)
5-Methylcytosine/analogs & derivatives , Pancreatic Neoplasms/genetics , Regulatory Sequences, Nucleic Acid , Sequence Analysis, RNA/methods , 5-Methylcytosine/metabolism , Animals , Cell Line, Tumor , Epigenesis, Genetic , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome-Wide Association Study , Histones/metabolism , Humans , Mice , Neoplasm Transplantation , Patient-Specific Modeling
15.
Blood ; 131(15): 1730-1742, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29453291

ABSTRACT

Epigenetic regulators are recurrently mutated and aberrantly expressed in acute myeloid leukemia (AML). Targeted therapies designed to inhibit these chromatin-modifying enzymes, such as the histone demethylase lysine-specific demethylase 1 (LSD1) and the histone methyltransferase DOT1L, have been developed as novel treatment modalities for these often refractory diseases. A common feature of many of these targeted agents is their ability to induce myeloid differentiation, suggesting that multiple paths toward a myeloid gene expression program can be engaged to relieve the differentiation blockade that is uniformly seen in AML. We performed a comparative assessment of chromatin dynamics during the treatment of mixed lineage leukemia (MLL)-AF9-driven murine leukemias and MLL-rearranged patient-derived xenografts using 2 distinct but effective differentiation-inducing targeted epigenetic therapies, the LSD1 inhibitor GSK-LSD1 and the DOT1L inhibitor EPZ4777. Intriguingly, GSK-LSD1 treatment caused global gains in chromatin accessibility, whereas treatment with EPZ4777 caused global losses in accessibility. We captured PU.1 and C/EBPα motif signatures at LSD1 inhibitor-induced dynamic sites and chromatin immunoprecipitation coupled with high-throughput sequencing revealed co-occupancy of these myeloid transcription factors at these sites. Functionally, we confirmed that diminished expression of PU.1 or genetic deletion of C/EBPα in MLL-AF9 cells generates resistance of these leukemias to LSD1 inhibition. These findings reveal that pharmacologic inhibition of LSD1 represents a unique path to overcome the differentiation block in AML for therapeutic benefit.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Leukemia, Biphenotypic, Acute/drug therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasms, Experimental/drug therapy , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/metabolism , Leukemia, Biphenotypic, Acute/pathology , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins/genetics , Response Elements , Trans-Activators/genetics
17.
Blood ; 129(12): 1586-1594, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28159737

ABSTRACT

Recent studies have demonstrated that myelodysplastic syndromes (MDSs) arise from a small population of disease-initiating hematopoietic stem cells (HSCs) that persist and expand through conventional therapies and are major contributors to disease progression and relapse. MDS stem and progenitor cells are characterized by key founder and driver mutations and are enriched for cytogenetic alterations. Quantitative alterations in hematopoietic stem and progenitor cell (HSPC) numbers are also seen in a stage-specific manner in human MDS samples as well as in murine models of the disease. Overexpression of several markers such as interleukin-1 (IL-1) receptor accessory protein (IL1RAP), CD99, T-cell immunoglobulin mucin-3, and CD123 have begun to differentiate MDS HSPCs from healthy counterparts. Overactivation of innate immune components such as Toll-like receptors, IL-1 receptor-associated kinase/tumor necrosis factor receptor-associated factor-6, IL8/CXCR2, and IL1RAP signaling pathways has been demonstrated in MDS HSPCs and is being targeted therapeutically in preclinical and early clinical studies. Other dysregulated pathways such as signal transducer and activator of transcription 3, tyrosine kinase with immunoglobulinlike and EGF-like domains 1/angiopoietin-1, p21-activated kinase, microRNA 21, and transforming growth factor ß are also being explored as therapeutic targets against MDS HSPCs. Taken together, these studies have demonstrated that MDS stem cells are functionally critical for the initiation, transformation, and relapse of disease and need to be targeted therapeutically for future curative strategies in MDSs.


Subject(s)
Hematopoietic Stem Cells/pathology , Myelodysplastic Syndromes/pathology , Animals , Biomarkers, Tumor/analysis , Disease Progression , Humans , Immunity, Innate , Myelodysplastic Syndromes/genetics , Neoplastic Stem Cells/pathology
18.
J Biol Chem ; 292(46): 18924-18936, 2017 11 17.
Article in English | MEDLINE | ID: mdl-28900037

ABSTRACT

The transcription factor C/EBPα is essential for myeloid differentiation and is frequently dysregulated in acute myeloid leukemia. Although studied extensively, the precise regulation of its gene by upstream factors has remained largely elusive. Here, we investigated its transcriptional activation during myeloid differentiation. We identified an evolutionarily conserved octameric sequence, CCCAGCAG, ∼100 bases upstream of the CEBPA transcription start site, and demonstrated through mutational analysis that this sequence is crucial for C/EBPα expression. This sequence is present in the genes encoding C/EBPα in humans, rodents, chickens, and frogs and is also present in the promoters of other C/EBP family members. We identified that ZNF143, the human homolog of the Xenopus transcriptional activator STAF, specifically binds to this 8-bp sequence to activate C/EBPα expression in myeloid cells through a mechanism that is distinct from that observed in liver cells and adipocytes. Altogether, our data suggest that ZNF143 plays an important role in the expression of C/EBPα in myeloid cells.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/genetics , Myeloid Cells/cytology , Promoter Regions, Genetic , Trans-Activators/metabolism , Transcriptional Activation , Base Sequence , Cell Line , Conserved Sequence , Gene Expression Regulation, Developmental , Hematopoiesis , Humans , Myeloid Cells/metabolism , Protein Binding
19.
Blood ; 127(12): 1525-6, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27013212

ABSTRACT

In this issue of Blood, Schulze et al use a tetracycline-inducible Dnmt3b knock-in mouse model to investigate how DNMT3B-mediated DNA methylation affects leukemogenesis. Increased DNMT3B expression prolonged survival in retrovirally induced Myc-Bcl2­ or MLL-AF9­driven leukemia, and acute myeloid leukemia (AML) patients with high expression of DNMT3B target genes showed inferior overall survival.


Subject(s)
Carcinogenesis/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Gene Expression Regulation, Leukemic , Leukemia/genetics , Animals , Humans
20.
Blood ; 138(16): 1382-1384, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34673950
SELECTION OF CITATIONS
SEARCH DETAIL