Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nature ; 479(7373): 359-64, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22048313

ABSTRACT

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Subject(s)
Biota , Climate Change/history , Extinction, Biological , Human Activities/history , Mammals/physiology , Animals , Bayes Theorem , Bison , DNA, Mitochondrial/analysis , DNA, Mitochondrial/genetics , Europe , Fossils , Genetic Variation , Geography , History, Ancient , Horses , Humans , Mammals/genetics , Mammoths , Molecular Sequence Data , Population Dynamics , Reindeer , Siberia , Species Specificity , Time Factors
2.
Mol Phylogenet Evol ; 41(1): 182-94, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16904916

ABSTRACT

The evolutionary history of Branchiopoda (Crustacea) traditionally has attracted considerable interest due to the diversity of the group. Recently molecular methods have been applied to the study of branchiopod systematics with some success, but central questions, such as the phylogenetic position of Laevicaudata and Notostraca, and the intrinsic cladoceran phylogeny, remain unanswered. We examined the phylogeny of Branchiopoda by using two genes, mitochondrial 16S rRNA and nuclear 28S rRNA, which previously have seen little use for inferring branchiopod phylogeny. The number of ingroup taxa included was 42, representing all eight extant branchiopod orders. The data were analyzed using parsimony, maximum likelihood, and Bayesian Inference of phylogeny. Some higher-level taxa were supported in all analyses of the combined data: Phyllopoda, Cladoceromorpha, Cladocera, and Gymnomera. Other higher-level taxa were not supported in any trees: Diplostraca and Conchostraca. A case is made for a possible diplostracan ingroup position of Notostraca based on our data and on previously published molecular and morphological evidence. The recent discovery of a Devonian branchiopod, which is morphologically an intermediate between a notostracan and a 'conchostracan', is congruent with a diplostracan ancestry of Notostraca.


Subject(s)
Crustacea/physiology , Phylogeny , Animals , Bayes Theorem , Biological Evolution , Crustacea/genetics , Likelihood Functions , Models, Genetic , RNA, Ribosomal, 16S , RNA, Ribosomal, 28S
SELECTION OF CITATIONS
SEARCH DETAIL