Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Vet Pathol ; 61(2): 243-247, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37547933

ABSTRACT

Lymphoglandular complexes are components of the gut-associated lymphoid tissue that are characterized by submucosal lymphoid aggregates invested by projections of mucosal epithelium. Reports of pathology involving these structures are rare in both human and veterinary literature. Here, the authors report 2 cases of rectal masses excised from dogs following a period of tenesmus and hematochezia. In both animals, the masses were composed of lymphoid tissue closely encompassing tubuloacinar structures. Immunohistochemistry and polymerase chain reaction antigen receptor rearrangement testing demonstrated that the lymphoid population was polyclonal, comprising T and B cells arranged in loosely follicular aggregates centered on the epithelial foci. In light of these findings, a diagnosis of lymphoglandular complex nodular hyperplasia was reported. To the authors' knowledge, this is the first report of this condition in dogs.


Subject(s)
Dog Diseases , Lymphoid Tissue , Humans , Animals , Dogs , Hyperplasia/veterinary , Epithelium , B-Lymphocytes , Immunohistochemistry , Dog Diseases/diagnosis
2.
J Immunol ; 200(5): 1901-1916, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29378910

ABSTRACT

Mucosal-associated invariant T (MAIT) cells produce inflammatory cytokines and cytotoxic granzymes in response to by-products of microbial riboflavin synthesis. Although MAIT cells are protective against some pathogens, we reasoned that they might contribute to pathology in chronic bacterial infection. We observed MAIT cells in proximity to Helicobacter pylori bacteria in human gastric tissue, and so, using MR1-tetramers, we examined whether MAIT cells contribute to chronic gastritis in a mouse H. pylori SS1 infection model. Following infection, MAIT cells accumulated to high numbers in the gastric mucosa of wild-type C57BL/6 mice, and this was even more pronounced in MAIT TCR transgenic mice or in C57BL/6 mice where MAIT cells were preprimed by Ag exposure or prior infection. Gastric MAIT cells possessed an effector memory Tc1/Tc17 phenotype, and were associated with accelerated gastritis characterized by augmented recruitment of neutrophils, macrophages, dendritic cells, eosinophils, and non-MAIT T cells and by marked gastric atrophy. Similarly treated MR1-/- mice, which lack MAIT cells, showed significantly less gastric pathology. Thus, we demonstrate the pathogenic potential of MAIT cells in Helicobacter-associated immunopathology, with implications for other chronic bacterial infections.


Subject(s)
Gastritis/immunology , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Mucosal-Associated Invariant T Cells/immunology , Adult , Animals , Cell Line, Tumor , Female , Gastric Mucosa/immunology , Humans , Immunologic Memory/immunology , Jurkat Cells , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , T-Lymphocytes, Cytotoxic/immunology
3.
Exp Lung Res ; 45(9-10): 310-322, 2019.
Article in English | MEDLINE | ID: mdl-31762329

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic lung disease with unknown cause. While the drugs nintedanib and pirfenidone have been approved for the treatment of IPF, they only slow disease progression and can induce several side-effects, suggesting that there is still an unmet need to develop new efficacious drugs, and interventions strategies, to combat this disease. We have recently developed a sheep model of pulmonary fibrosis for the preclinical testing of novel anti-fibrotic drugs. The aim of this study was to assess the effects of pirfenidone to ascertain its suitability as a benchmark for comparing other novel therapeutics in this sheep model. To initiate localized fibrosis, sheep were given two infusions of bleomycin (0.6 U/ml per infusion), a fortnight apart, to a specific lung segment. The contralateral lung segment in each sheep was infused with saline to act as an internal control. Two weeks after the final bleomycin infusion, either pirfenidone or methylcellulose (vehicle control) were administered orally to sheep twice daily for 5 weeks. Results showed that sheep treated with pirfenidone had improved lung function, ameliorated fibrotic pathology, lower numbers of active myofibroblasts, and reduced extra cellular matrix deposition when compared with the relevant measurements obtained from control sheep treated with vehicle. This study showed that pirfenidone can attenuate bleomycin-induced pulmonary fibrosis in sheep, and can therefore be used as a positive control to assess other novel therapeutics for IPF in this model.


Subject(s)
Idiopathic Pulmonary Fibrosis/drug therapy , Lung/drug effects , Pyridones/pharmacology , Animals , Bleomycin/pharmacology , Disease Models, Animal , Extracellular Matrix/drug effects , Female , Indoles/pharmacology , Myofibroblasts/drug effects , Sheep
4.
Vet Microbiol ; 290: 109990, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228079

ABSTRACT

The bacterial agent that causes fowl cholera, Pasteurella multocida, was isolated from two deceased wild waterbirds in Victoria, Australia, in 2013. Whole genome sequence analysis placed the isolates into ST20, a subtype described in farmed chickens from Queensland, Australia and more recently in feedlot cattle and in pigs across a broader area of the continent. This study also found ST20 between 2009 and 2022 on three chicken farms and two turkey farms located in four Australian states. The sequences of 25 of these ST20 isolates were compared to 280 P. multocida genomes from 23 countries and to 94 ST20 Illumina datasets from Queensland that have been deposited in public databases. The ST20 isolates formed a single phylogenetic clade and were clustered into four sub-groups with highly similar genomes, possessing either LPS type 1 or type 3 loci. Various repertoires of mobile genetic elements were present in isolates from farmed, but not wild birds, suggesting complex histories of spill-over between avian populations and gene acquisition within farm environments. No major antimicrobial resistance was predicted in any of the ST20 isolates by the genomic analysis. The closest relative of these isolates was a ST394 bovine respiratory tract isolate from Queensland, which differed from ST20 by only one allele and carried beta-lactam and tetracycline resistance genes. These findings underline the importance of understanding the role of wild and commercial birds in the maintenance of fowl cholera, and of implementing regular epidemiological surveillance and biosecurity management programmes in wildlife, as well as free-range poultry farms.


Subject(s)
Cattle Diseases , Cholera , Pasteurella Infections , Pasteurella multocida , Poultry Diseases , Swine Diseases , Animals , Cattle , Swine , Poultry , Farms , Chickens , Phylogeny , Cholera/veterinary , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Pasteurella Infections/epidemiology , Pasteurella Infections/veterinary , Pasteurella Infections/microbiology , Animals, Wild , Victoria
5.
Vet Microbiol ; 287: 109921, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38000210

ABSTRACT

Mycoplasma synoviae is a pathogen of poultry that causes upper respiratory tract disease. MS-H is a live attenuated temperature-sensitive vaccine that effectively control M. synoviae infection in chickens. However, the mechanisms underpinning protection have not been described previously. In this study, specific-pathogen-free chickens were vaccinated at 3 weeks of age with MS-H vaccine and challenged with field strain M. synoviae 94011/v-18d at 6 weeks of age. Tracheal mucosal inflammation was characterised by the assessment of thickness, histopathological lesions, cellular infiltrates and cytokine transcription. Tracheal lesion scores of unvaccinated-challenged (-V+C) birds were higher than that of vaccinated-challenged (+V+C) birds. +V+C birds displayed early upregulation of IL-4, consistent with a Th-2-skewed response, followed by a later increase in IFN-γ transcription, indicating transition to a Th-1-skewed response. -V+C birds displayed a concurrent early Th-2 and Th-17 response characterised by increase expression of IL-4 and IL-17A respectively, and late T regulatory response characterised by increased IL-10 transcription. +V+C chickens had more cytotoxic T cells (CD8+ T cells) at 7- and 21 days post-challenge (dpc), while -V+C chickens had higher numbers of infiltrating CD4+CD25+ at 7 and 21 dpc. Overall, these observations suggest that the immune response in +V+C chickens had an inflammation characterised by an early Th-2 skewed response followed closely by a Th-1 response and infiltration of cytotoxic T cells, while the response in -V+C chickens was an early Th-2/Th-17-skewed response closely followed by a T regulatory response.


Subject(s)
Mycoplasma Infections , Mycoplasma synoviae , Poultry Diseases , Animals , Chickens , CD8-Positive T-Lymphocytes , Interleukin-4/genetics , Mycoplasma Infections/veterinary , Mucous Membrane , Bacterial Vaccines , Inflammation/veterinary , Poultry Diseases/prevention & control
6.
Front Immunol ; 14: 1109759, 2023.
Article in English | MEDLINE | ID: mdl-37720229

ABSTRACT

Introduction: Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells, which mediate host immunity to microbial infection by recognizing metabolite antigens derived from microbial riboflavin synthesis presented by the MHC-I-related protein 1 (MR1). Namely, the potent MAIT cell antigens, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), form via the condensation of the riboflavin precursor 5-amino-6-D-ribitylaminouracil (5-A-RU) with the reactive carbonyl species (RCS) methylglyoxal (MG) and glyoxal (G), respectively. Although MAIT cells are abundant in humans, they are rare in mice, and increasing their abundance using expansion protocols with antigen and adjuvant has been shown to facilitate their study in mouse models of infection and disease. Methods: Here, we outline three methods to increase the abundance of MAIT cells in C57BL/6 mice using a combination of inflammatory stimuli, 5-A-RU and MG. Results: Our data demonstrate that the administration of synthetic 5-A-RU in combination with one of three different inflammatory stimuli is sufficient to increase the frequency and absolute numbers of MAIT cells in C57BL/6 mice. The resultant boosted MAIT cells are functional and can provide protection against a lethal infection of Legionella longbeachae. Conclusion: These results provide alternative methods for expanding MAIT cells with high doses of commercially available 5-A-RU (± MG) in the presence of various danger signals.


Subject(s)
Mucosal-Associated Invariant T Cells , Humans , Animals , Mice , Mice, Inbred C57BL , Adjuvants, Immunologic , Pyruvaldehyde , Riboflavin
7.
Vet Immunol Immunopathol ; 251: 110472, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35940079

ABSTRACT

Mycoplasma synoviae causes respiratory tract disease in chickens characterised by mild to moderate lymphoplasmacytic infiltration of the tracheal mucosa. MS-H (Vaxsafe1 MS, Bioproperties Pty Ltd.) is an effective live attenuated vaccine for M. synoviae, but the immunological basis for its mechanism of protection has not been investigated, and the phenotypes of lymphocytes and associated cytokines involved in the local adaptive immune response have not been described previously. In this study, specific-pathogen-free chickens were inoculated intra-ocularly at 3 weeks of age with either M. synoviae vaccine strain MS-H or vaccine parent strain 86079/7NS (7NS), or remained uninoculated. At 2-, 7- and 21 days post-inoculation (dpi), tracheal mucosal pathology, infiltrating lymphocytes subsets and transcription levels of mRNA encoding 8 cytokines were assessed using light microscopy, indirect immunofluorescent staining and RT-qPCR, respectively. After inoculation, tracheal mucosal thickness, tracheal mucosal lesions, and numbers of infiltrating CD4+CD25- cells, B-cells, and macrophages were greater in MS-H- and 7NS-inoculated chickens compared with non-inoculated. Inoculation with 7NS induced up-regulation of IFN-γ, while vaccination with MS-H induced up-regulation of IL-17A, when compared with non-inoculated birds. Both inoculated groups had a moderate infiltrate of CD4+CD25+ T cells in the tracheal mucosa. These findings reveal that the tracheal local cellular response after MS-H inoculation is dominated by a Th-17 response, while that of 7NS-inoculated chickens is dominated by a Th-1 type response.


Subject(s)
Mycoplasma Infections , Mycoplasma synoviae , Poultry Diseases , Animals , Bacterial Vaccines , Chickens , Cytokines , Immunity, Cellular , Mycoplasma Infections/prevention & control , Mycoplasma Infections/veterinary , Poultry Diseases/prevention & control , Vaccines, Attenuated
8.
Clin Case Rep ; 6(5): 821-826, 2018 May.
Article in English | MEDLINE | ID: mdl-29744065

ABSTRACT

Whilst the malignant transformation of nasal polyps or secondary development of nasal neoplasia after chronic inflammation is likely to be relatively rare, this potential complication should be considered, and the clinician should be vigilant for evidence of malignant transformation.

9.
Nat Commun ; 9(1): 3350, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135490

ABSTRACT

Mucosal associated invariant T (MAIT) cells recognise conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defence, yet their functions in protection against clinically important pathogens are unknown. Here we show that mouse Legionella longbeachae infection induces MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in immunocompetent host animals. MAIT cell protection is more evident in mice lacking CD4+ cells, and adoptive transfer of MAIT cells rescues immunodeficient Rag2-/-γC-/- mice from lethal Legionella infection. Protection is dependent on MR1, IFN-γ and GM-CSF, but not IL-17A, TNF or perforin, and enhanced protection is detected earlier after infection of mice antigen-primed to boost MAIT cell numbers before infection. Our findings define a function for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity.


Subject(s)
Legionella longbeachae/pathogenicity , Lung/microbiology , Mucosal-Associated Invariant T Cells/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Interleukin-17/metabolism , Legionella longbeachae/immunology , Legionellosis/immunology , Legionellosis/microbiology , Lung/metabolism , Male , Mice , Mucosal-Associated Invariant T Cells/metabolism , Perforin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL