ABSTRACT
During the summer of 2022, a cluster of Madagascar periwinkle plants with white and mauve flowers were observed with foliar mild yellow mosaic symptoms on a private property in Harlingen, Cameron County, Texas. The symptoms were reproduced on mechanically inoculated periwinkle and Nicotiana benthamiana plants. Virions of 776 to 849 nm in length and 11.7 to 14.8 nm in width were observed in transmission electron microscopy of leaf dip preparations made from symptomatic periwinkle leaves. High-throughput sequencing (HTS) analysis of total RNA extracts from symptomatic leaves revealed the occurrence of two highly divergent variants of a novel Potyvirus species as the only virus-like sequences present in the sample. The complete genomes of both variants were independently amplified via reverse transcriptase PCR, cloned, and Sanger sequenced. The 5' and 3' of the genomes were acquired using random amplification of cDNA ends methodology. The assembled virus genomes were 9,936 and 9,944 nucleotides (nt) long, and they shared 99.9 to 100% identities with the respective HTS-derived genomes. Each genome encoded hypothetical polyprotein of 3,171 amino acids (aa) (362.6 kilodaltons [kDa]) and 3,173 aa (362.7 kDa), respectively, and they shared 77.3/84.4% nt/aa polyprotein identities, indicating that they represent highly divergent variants of the same Potyvirus species. Both genomes also shared below-species-threshold polyprotein identity levels with the most closely phylogenetically related known potyviruses, thus indicating that they belong to a novel species. The name periwinkle mild yellow mosaic virus (PwMYMV) is given to the potyvirus with complete genomes of 9,936 nt for variant 1 (PwMYMV-1) and 9,944 nt for variant 2 (PwMYMV-2). We propose that PwMYMV be assigned into the genus Potyvirus (family Potyviridae).
Subject(s)
Catharanthus , Genome, Viral , Phylogeny , Plant Diseases , Potyvirus , Potyvirus/genetics , Potyvirus/classification , Potyvirus/isolation & purification , Plant Diseases/virology , Genome, Viral/genetics , Catharanthus/virology , Plant Leaves/virology , High-Throughput Nucleotide Sequencing , RNA, Viral/genetics , Genetic Variation , Nicotiana/virology , TexasABSTRACT
Sugar pine, Pinus lambertiana Douglas, is a keystone species of montane forests from Baja California to southern Oregon. Like other North American white pines, populations of sugar pine have been greatly reduced by the disease white pine blister rust (WPBR) caused by a fungal pathogen, Cronartium ribicola, that was introduced into North America early in the twentieth century. Major gene resistance to WPBR segregating in natural populations has been documented in sugar pine. Indeed, the dominant resistance gene in this species, Cr1, was genetically mapped, although not precisely. Genomic single nucleotide polymorphisms (SNPs) placed in a large scaffold were reported to be associated with the allele for this major gene resistance (Cr1R). Forest restoration efforts often include sugar pine seed derived from the rare resistant individuals (typically Cr1R/Cr1r) identified through an expensive 2-year phenotypic testing program. To validate and geographically characterize the variation in this association and investigate its potential to expedite genetic improvement in forest restoration, we developed a simple PCR-based, diploid genotyping of DNA from needle tissue. By applying this to range-wide samples of susceptible and resistant (Cr1R) trees, we show that the SNPs exhibit a strong, though not complete, association with Cr1R. Paralleling earlier studies of the geographic distribution of Cr1R and the inferred demographic history of sugar pine, the resistance-associated SNPs are marginally more common in southern populations, as is the frequency of Cr1R. Although the strength of the association of the SNPs with Cr1R and thus, their predictive value, also varies with geography, the potential value of this new tool in quickly and efficiently identifying candidate WPBR-resistant seed trees is clear.
Subject(s)
Pinus , Basidiomycota , Genomics , Mexico , Pinus/genetics , Pinus/microbiology , Polymorphism, Single Nucleotide/genetics , SugarsABSTRACT
Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.
Subject(s)
Genome, Plant/genetics , Genomics , Juglans/genetics , Transcriptome , Disease Resistance/genetics , Juglans/physiology , Stress, PhysiologicalABSTRACT
The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs. Newly discovered associations for white pine blister rust quantitative disease resistance included 453 SNPs involved in wide biological functions, including genes associated with disease resistance and others involved in morphological and developmental processes. In addition, NBS-LRR pathogen recognition genes were found to be involved in quantitative disease resistance, suggesting these newly reported genes are qualitative genes with partial resistance, they are the result of defeated qualitative resistance due to avirulent races, or they have epistatic effects on qualitative disease resistance genes. This study is a step forward in our understanding of the complex genomic architecture of quantitative disease resistance in long-generation trees, and constitutes the first step towards marker-assisted disease resistance breeding in white pine species.
Subject(s)
Basidiomycota/physiology , Disease Resistance/genetics , Pinus/genetics , Pinus/microbiology , Chromosome Mapping , Genes, Plant , Genetics, Population , Genome, Plant , Genome-Wide Association Study , Phenotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Quantitative Trait LociABSTRACT
Eriophyid mites are commonly found on the leaf surface of different plant species. In the present study, a novel virus associated with an eriophyid mite species was detected using high-throughput sequencing (HTS) of total RNA from fruit tree leaves, primarily growing under greenhouse conditions. The complete genome sequence was characterized using rapid amplification of cDNA ends followed by Sanger sequencing, revealing a genome of 8885 nucleotides in length. The single positive-stranded RNA genome was predicted to encode typical conserved domains of members of the genus Iflavirus in the family Iflaviridae. Phylogenetic analysis showed this virus to be closely related to the unclassified iflavirus tomato matilda associated virus (TMaV), with a maximum amino acid sequence identity of 59% in the RNA-dependent RNA polymerase domain. This low identity value justifies the recognition of the novel virus as a potential novel iflavirus. In addition to a lack of graft-transmissibility evidence, RT-PCR and HTS detection of this virus in the putative host plants were not consistent through different years and growing seasons, raising the possibility that rather than a plant virus, this was a virus infecting an organism associated with fruit tree leaves. Identification of Tetra pinnatifidae HTS-derived contigs in all fruit tree samples carrying the novel virus suggested this mite as the most likely host of the new virus (p-value < 1e-11), which is tentatively named "eriophyid mite-associated virus" (EMaV). This study highlights the importance of a careful biological study before assigning a new virus to a particular plant host when using metagenomics data.
Subject(s)
Fruit/parasitology , Mites/virology , Positive-Strand RNA Viruses/classification , Trees/parasitology , Amino Acid Sequence , Animals , Fruit/virology , Genome, Viral/genetics , Metagenomics , Phylogeny , Plant Extracts , Plant Leaves/parasitology , Plant Leaves/virology , Positive-Strand RNA Viruses/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Trees/virologyABSTRACT
Rubus yellow net virus (RYNV) infects Rubus spp., causing a severe decline when present in mixed infections with other viruses. RYNV belongs to the family Caulimoviridae, also known as plant pararetroviruses, which can exist as episomal or integrated elements (endogenous). Most of integrated pararetroviruses are noninfectious; however, a few cases have been reported where they excised from the plant genome and formed infectious particles. Graft transmission onto indicator plants R. occidentalis "Munger" has been the standard test method for RYNV detection in certification programs. Previously, it was noticed that some RYNV PCR-positive plants did not induce symptoms on "Munger", suggesting an integration event. In this study, bio-indexing and different molecular techniques were employed to differentiate between integrated and episomal RYNV sequences. Reverse transcription-PCR using RYNV-specific oligonucleotides after DNase treatment generated positive results for the virus in graft transmissible isolates (episomal) only. To confirm these results, rolling circle amplification on DNA preparations from the same samples resulted in amplicons identified as RYNV only from plants with graft transmissible RYNV. High-throughput sequencing was used to identify the RYNV-like sequences present in the host DNA. These results indicate the integration of RYNV into the red raspberry genome and highlight the necessity to recognize this phenomenon (integration) in future Rubus quarantine and certification programs.
Subject(s)
Caulimoviridae/genetics , Genome, Plant/genetics , Plant Viruses/genetics , Rubus/genetics , Rubus/virology , Virus Integration/genetics , Caulimoviridae/isolation & purification , Plant Diseases/genetics , Plant Diseases/prevention & control , Plant Diseases/virology , Plant Viruses/isolation & purification , Plasmids/geneticsABSTRACT
Over the last 20 years, global production of Persian walnut (Juglans regia L.) has grown enormously, likely reflecting increased consumption due to its numerous benefits to human health. However, advances in genome-wide association (GWA) studies and genomic selection (GS) for agronomically important traits in walnut remain limited due to the lack of powerful genomic tools. Here, we present the development and validation of a high-density 700K single nucleotide polymorphism (SNP) array in Persian walnut. Over 609K high-quality SNPs have been thoroughly selected from a set of 9.6 m genome-wide variants, previously identified from the high-depth re-sequencing of 27 founders of the Walnut Improvement Program (WIP) of University of California, Davis. To validate the effectiveness of the array, we genotyped a collection of 1284 walnut trees, including 1167 progeny of 48 WIP families and 26 walnut cultivars. More than half of the SNPs (55.7%) fell in the highest quality class of 'Poly High Resolution' (PHR) polymorphisms, which were used to assess the WIP pedigree integrity. We identified 151 new parent-offspring relationships, all confirmed with the Mendelian inheritance test. In addition, we explored the genetic variability among cultivars of different origin, revealing how the varieties from Europe and California were differentiated from Asian accessions. Both the reconstruction of the WIP pedigree and population structure analysis confirmed the effectiveness of the Applied Biosystems™ Axiom™ J. regia 700K SNP array, which initiates a novel genomic and advanced phase in walnut genetics and breeding.
Subject(s)
Genomics , Genotyping Techniques , Juglans , Genome-Wide Association Study , Genomics/methods , Genotype , Genotyping Techniques/instrumentation , Humans , Juglans/genetics , Polymorphism, Single Nucleotide/geneticsABSTRACT
Dissecting the genetic and genomic architecture of complex traits is essential to understand the forces maintaining the variation in phenotypic traits of ecological and economical importance. Whole-genome resequencing data were used to generate high-resolution polymorphic single nucleotide polymorphism (SNP) markers and genotype individuals from common gardens across the loblolly pine (Pinus taeda) natural range. Genome-wide associations were tested with a large phenotypic dataset comprising 409 variables including morphological traits (height, diameter, carbon isotope discrimination, pitch canker resistance), and molecular traits such as metabolites and expression of xylem development genes. Our study identified 2335 new SNP × trait associations for the species, with many SNPs located in physical clusters in the genome of the species; and the genomic location of hotspots for metabolic × genotype associations. We found a highly polygenic basis of quantitative inheritance, with significant differences in number, effects size, genomic location and frequency of alleles contributing to variation in phenotypes in the different traits. While mutation-selection balance might be shaping the genetic variation in metabolic traits, balancing selection is more likely to shape the variation in expression of xylem development genes. Our work contributes to the study of complex traits in nonmodel plant species by identifying associations at a whole-genome level.
Subject(s)
Multifactorial Inheritance , Pinus taeda/genetics , Polymorphism, Single Nucleotide , Gene Frequency , Genetics, Population , Genome-Wide Association Study , Genotype , Phenotype , Pinus taeda/physiology , United States , Whole Genome Sequencing , Xylem/genetics , Xylem/growth & developmentABSTRACT
A novel virus with a (+) single-stranded RNA genome was detected by high-throughput sequencing (HTS) in a sample of grapevine (Vitis vinifera) cv. Kizil Sapak (sample/isolate 127) that originated from Turkmenistan. The complete genome of the virus, tentatively named "grapevine Kizil Sapak virus" (GKSV), is 7,604 nucleotides in length, excluding the poly(A) tail. The genome organization of GKSV, encoded genes, and sequence domains are typical for members of the family Betaflexiviridae, specifically those belonging to the subfamily Trivirinae. Phylogenetic analysis placed GKSV within the subfamily Trivirinae, in the same clade as fig latent virus 1 (FLV-1) but distinct from the clades formed by members of other genera. A comparative analysis of GKSV-127 with the HTS-derived sequences obtained from two additional isolates showed that they are genetic variants of the same virus species. Based on current ICTV species and genus demarcation criteria, and the results of the sequence and phylogenetic analyses, we propose that GKSV and FLV-1 represent a new genus within the subfamily Trivirinae.
Subject(s)
Flexiviridae/genetics , Flexiviridae/isolation & purification , Plant Diseases/virology , Vitis/virology , Flexiviridae/classification , Genome, Viral , Genomics , Open Reading Frames , PhylogenyABSTRACT
Pistachio (Pistacia vera L.) trees from the National Clonal Germplasm Repository (NCGR) and orchards in California were surveyed for viruses and virus-like agents by high-throughput sequencing (HTS). Analyses of sequence information from 60 trees identified a novel virus, provisionally named "Pistachio ampelovirus A" (PAVA), in the NCGR that showed low amino acid sequence identity (approximately 42%) compared with members of the genus Ampelovirus (family Closteroviridae). A putative viroid, provisionally named "Citrus bark cracking viroid-pistachio" (CBCVd-pis), was also found in the NCGR and showed approximately 87% similarity to Citrus bark cracking viroid (CBCVd, genus Cocadviroid, family Pospiviroidae). Both PAVA and CBCVd-pis were graft transmissible to healthy UCB-1 hybrid rootstock seedlings (P. atlantica × P. integerrima). A field survey of 123 trees from commercial orchards found no incidence of PAVA but five (4%) samples were infected with CBCVd-pis. Of 675 NCGR trees, 16 (2.3%) were positive for PAVA and 172 (25.4%) were positive for CBCVd-pis by reverse-transcription polymerase chain reaction. Additionally, several contigs across multiple samples exhibited significant sequence similarity to a number of other plant virus species in different families. These findings require further study and confirmation. This study establishes the occurrence of viral and viroid populations infecting pistachio trees.
Subject(s)
Closteroviridae/physiology , High-Throughput Nucleotide Sequencing/methods , Pistacia/virology , Plant Diseases/virology , Plant Viruses/physiology , Viroids/physiology , California , Capsid Proteins/genetics , Closteroviridae/classification , Closteroviridae/genetics , Genome, Viral/genetics , Host-Pathogen Interactions , Phylogeny , Pistacia/classification , Plant Viruses/classification , Plant Viruses/genetics , Species Specificity , Viroids/classification , Viroids/geneticsABSTRACT
The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar 'Chandler' to discover target genes and additional unknown genes. The 667-Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER-P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue-specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1-ß-glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1-O-galloyl-ß-d-glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traits.
Subject(s)
Genome, Plant/genetics , Juglans/genetics , Plant Proteins/genetics , Polyphenols/metabolism , Catechol Oxidase/metabolismABSTRACT
Drosophila melanogaster has played a pivotal role in the development of modern population genetics. However, many basic questions regarding the demographic and adaptive history of this species remain unresolved. We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection within an African population, between African populations, and between European and African populations. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa F(ST) were found to be enriched in genomic regions of locally elevated cosmopolitan admixture, possibly reflecting a role for some of these loci in driving the introgression of non-African alleles into African populations.
Subject(s)
Drosophila melanogaster/genetics , Genetic Variation , Genome, Insect , Metagenomics , Adaptation, Physiological/genetics , Africa South of the Sahara , Alleles , Animals , Base Sequence , Europe , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Selection, GeneticABSTRACT
Gene duplication via retrotransposition has been shown to be an important mechanism in evolution, affecting gene dosage and allowing for the acquisition of new gene functions. Although fixed retrotransposed genes have been found in a variety of species, very little effort has been made to identify retrogene polymorphisms. Here, we examine 37 Illumina-sequenced North American Drosophila melanogaster inbred lines and present the first ever data set and analysis of polymorphic retrogenes in Drosophila. We show that this type of polymorphism is quite common, with any two gametes in the North American population differing in the presence or absence of six retrogenes, accounting for ~13% of gene copy-number heterozygosity. These retrogenes were identified by a straightforward method that can be applied using any type of DNA sequencing data. We also use a variant of this method to conduct a genome-wide scan for intron presence/absence polymorphisms, and show that any two chromosomes in the population likely differ in the presence of multiple introns. We show that these polymorphisms are all in fact deletions rather than intron gain events present in the reference genome. Finally, by leveraging the known location of the parental genes that give rise to the retrogene polymorphisms, we provide direct evidence that natural selection is responsible for the excess of fixations of retrogenes moving off of the X chromosome in Drosophila. Further efforts to identify retrogene and intron presence/absence polymorphisms will undoubtedly improve our understanding of the evolution of gene copy number and gene structure.
Subject(s)
Chromosomes, Insect/genetics , Gene Dosage/physiology , Genes, Insect/physiology , Introns/physiology , Polymorphism, Genetic/physiology , X Chromosome/genetics , Animals , Drosophila melanogaster , Female , Genome-Wide Association Study , MaleABSTRACT
Galphimia spp. is a plant employed in traditional medicine in Mexico because of its anxiolytic and sedative effects. Viruses have been associated with different alterations in plants, although asymptomatic agents (i.e., cryptic viruses) are also known. High-throughput sequencing (HTS) allows for the detection of pathogenic and non-pathogenic viral agents in plants, including potential novel viruses. The aim of this study was to investigate the presence of viral agents in two populations of Galphimia spp. by HTS. Sequencing was conducted on an Illumina NextSeq 550 platform, and a putative novel virus was identified. Two contigs showed homology to partitiviruses, and these encoded the RNA-dependent RNA polymerase and coat protein. These proteins showed the highest identities with orthologs in the recently discovered Vitis cryptic virus. A phylogenetic analysis of both RNAs showed that the new virus clusters into the monophyletic genus Deltapartitivirus along with other plant-infecting viruses. The result of the HTS analysis was validated by conventional RT-PCR and Sanger sequencing. A novel virus was discovered in a symptomless Galphimia spp. plant and tentatively named the Galphimia cryptic virus (GCV). This is the first virus discovered in medicinal plants in Mexico.
ABSTRACT
The maintenance of stable mating type polymorphisms is a classic example of balancing selection, underlying the nearly ubiquitous 50/50 sex ratio in species with separate sexes. One lesser known but intriguing example of a balanced mating polymorphism in angiosperms is heterodichogamy - polymorphism for opposing directions of dichogamy (temporal separation of male and female function in hermaphrodites) within a flowering season. This mating system is common throughout Juglandaceae, the family that includes globally important and iconic nut and timber crops - walnuts (Juglans), as well as pecan and other hickories (Carya). In both genera, heterodichogamy is controlled by a single dominant allele. We fine-map the locus in each genus, and find two ancient (>50 Mya) structural variants involving different genes that both segregate as genus-wide trans-species polymorphisms. The Juglans locus maps to a ca. 20 kb structural variant adjacent to a probable trehalose phosphate phosphatase (TPPD-1), homologs of which regulate floral development in model systems. TPPD-1 is differentially expressed between morphs in developing male flowers, with increased allele-specific expression of the dominant haplotype copy. Across species, the dominant haplotype contains a tandem array of duplicated sequence motifs, part of which is an inverted copy of the TPPD-1 3' UTR. These repeats generate various distinct small RNAs matching sequences within the 3' UTR and further downstream. In contrast to the single-gene Juglans locus, the Carya heterodichogamy locus maps to a ca. 200-450 kb cluster of tightly linked polymorphisms across 20 genes, some of which have known roles in flowering and are differentially expressed between morphs in developing flowers. The dominant haplotype in pecan, which is nearly always heterozygous and appears to rarely recombine, shows markedly reduced genetic diversity and is over twice as long as its recessive counterpart due to accumulation of various types of transposable elements. We did not detect either genetic system in other heterodichogamous genera within Juglandaceae, suggesting that additional genetic systems for heterodichogamy may yet remain undiscovered.
ABSTRACT
The grapevine fleck virus (GFkV) is a ubiquitous grapevine-infecting virus found worldwide, is associated with the grapevine fleck complex, and is often found in mixed infections with viruses of the grapevine leafroll complex and/or vitiviruses. Although GFkV has been studied for a long time, limited sequence information is available in the public databases. In this study, the GFkV sequence data available in GenBank and data generated at the Foundation Plant Services, University of California, Davis, were used to perform nucleotide sequence comparisons, construct a phylogenetic tree, and develop a new RT-qPCR assay. Sequence comparisons showed high genetic diversity among the GFkV isolates, and the phylogenetic analyses revealed a new group comprised of GFkV isolates identified in the present study. A new assay, referred to as GFkV-CP, was designed and validated using an existing GFkV positive control together with 11 samples known to be infected with combinations of different marafiviruses and maculaviruses but not GFkV. In addition, the newly designed assay was used in a field survey to screen grapevines from diverse geographical locations that are maintained at the United States Department of Agriculture (USDA) National Clonal Germplasm Repository (NCGR) in Winters, CA.
Subject(s)
Capsid Proteins , Genetic Variation , Phylogeny , Plant Diseases , Real-Time Polymerase Chain Reaction , Vitis , Capsid Proteins/genetics , Vitis/virology , Plant Diseases/virology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Analysis, DNA , Flexiviridae/genetics , Flexiviridae/classification , Flexiviridae/isolation & purificationABSTRACT
In the original publication [...].
ABSTRACT
This is the first viral metagenomic analysis of grapevine conducted in Mexico. During the summer of 2021, 48 plants displaying virus-like symptoms were sampled in Queretaro, an important grapevine-producing area of Mexico, and analyzed for the presence of viruses via high-throughput sequencing (HTS). The results of HTS were verified by real-time RT-PCR following a standardized testing scheme (Protocol 2010). Fourteen different viruses were identified, including grapevine asteroid mosaic-associated virus (GAMaV), grapevine Cabernet Sauvignon reovirus (GCSV), grapevine fanleaf virus (GFLV), grapevine fleck virus (GFkV), grapevine Pinot gris virus (GPGV), grapevine red globe virus (GRGV), grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine rupestris vein feathering virus (GRVFV), grapevine Syrah virus 1 (GSyV-1), grapevine virus B (GVB), and grapevine leafroll-associated viruses 1, 2, 3, 4 (GLRaV1, 2, 3, 4). Additionally, divergent variants of GLRaV4 and GFkV, and a novel Enamovirus-like virus were discovered. This is the first report of GAMaV, GCSV, GLRaV4, GPGV, GRGV, GRVFV, and GSyV-1 infecting grapevines in Mexico; the impact of these pathogens on production is unknown.
Subject(s)
Luteoviridae , Vitis , Mexico , Incidence , Plant Diseases , High-Throughput Nucleotide SequencingABSTRACT
High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues, has become an indispensable tool for plant virologists to detect and identify plant viruses. During the data analysis step, plant virologists typically compare the obtained sequences to reference virus databases. In this way, they are neglecting sequences without homologies to viruses, which usually represent the majority of sequencing reads. We hypothesized that traces of other pathogens might be detected in this unused sequence data. In the present study, our goal was to investigate whether total RNA-seq data, as generated for plant virus detection, is also suitable for the detection of other plant pathogens and pests. As proof of concept, we first analyzed RNA-seq datasets of plant materials with confirmed infections by cellular pathogens in order to check whether these non-viral pathogens could be easily detected in the data. Next, we set up a community effort to re-analyze existing Illumina RNA-seq datasets used for virus detection to check for the potential presence of non-viral pathogens or pests. In total, 101 datasets from 15 participants derived from 51 different plant species were re-analyzed, of which 37 were selected for subsequent in-depth analyses. In 29 of the 37 selected samples (78%), we found convincing traces of non-viral plant pathogens or pests. The organisms most frequently detected in this way were fungi (15/37 datasets), followed by insects (13/37) and mites (9/37). The presence of some of the detected pathogens was confirmed by independent (q)PCRs analyses. After communicating the results, 6 out of the 15 participants indicated that they were unaware of the possible presence of these pathogens in their sample(s). All participants indicated that they would broaden the scope of their bioinformatic analyses in future studies and thus check for the presence of non-viral pathogens. In conclusion, we show that it is possible to detect non-viral pathogens or pests from total RNA-seq datasets, in this case primarily fungi, insects, and mites. With this study, we hope to raise awareness among plant virologists that their data might be useful for fellow plant pathologists in other disciplines (mycology, entomology, bacteriology) as well.
ABSTRACT
Extracting sequence information from raw images of fluorescence is the foundation underlying several high-throughput sequencing platforms. Some of the main challenges associated with this technology include reducing the error rate, assigning accurate base-specific quality scores, and reducing the cost of sequencing by increasing the throughput per run. To demonstrate how computational advancement can help to meet these challenges, a novel model-based base-calling algorithm, BayesCall, is introduced for the Illumina sequencing platform. Being founded on the tools of statistical learning, BayesCall is flexible enough to incorporate various features of the sequencing process. In particular, it can easily incorporate time-dependent parameters and model residual effects. This new approach significantly improves the accuracy over Illumina's base-caller Bustard, particularly in the later cycles of a sequencing run. For 76-cycle data on a standard viral sample, phiX174, BayesCall improves Bustard's average per-base error rate by approximately 51%. The probability of observing each base can be readily computed in BayesCall, and this probability can be transformed into a useful base-specific quality score with a high discrimination ability. A detailed study of BayesCall's performance is presented here.