Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Chemistry ; 30(31): e202400433, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38568800

ABSTRACT

Cerium-based Metal-Organic frameworks (Ce-MOFs) are attracting increasing interest due to their similar structural features to zirconium MOFs. The redox behavior of Ce(III/IV) adds a range of properties to the compounds. Recently, perfluorinated linkers have been used in the synthesis of MOFs to introduce new characteristic into the structure. We report the synthesis and structural characterization of Ce(IV)-based MOFs constructed using two perfluorinated alkyl linkers. Their structure, based on hexanuclear Ce6O4(OH)4 12+ clusters linked to each other by the dicarboxylate ions, has been solved ab-initio from X-ray powder diffraction data and refined by the Rietveld method. The crystallization kinetics and the MOF formation mechanism was also invesitigated by Synchrotron radiation with XAS spectroscopies (EXAFS and XANES). The MOFs present the same fcu cubic topology as observed in MOF-801 and UiO-66, and they showed good stability in water at different pH conditions. The electronic structure of these MOFs has been studied by DFT calculations in order to obtain insights into the density of states structure of the reported compounds, resulting in band gaps in the range of 2.8-3.1 eV. Their catalytic properties were tested both thermally and under visible light irradiation for the degradation of methyl orange (MO) dye.

2.
Chemistry ; 29(48): e202301760, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37272919

ABSTRACT

Herein, we report two new COOH-functionalized metal-organic frameworks (MOFs) of composition [M6 O4 (OH)6 (PMA)2 (H2 PMA)]×H2 O, M=Zr, Hf), denoted CAU-61, synthesized by using pyromellitic acid (H4 PMA), a tetracarboxylic acid, as the linker and acetic acid as the solvent. The structure was determined from powder X-ray diffraction data and one-dimensional inorganic building units are connected through tetracarboxylate as well as dicarboxylate linker molecules, resulting in highly stable microporous framework structures with limiting and maximum pore diameter of ∼3.6 and ∼5.0 Å, respectively, lined with -COOH groups. Thermal stabilities of up to 400 °C in air, chemical stability in water at pH 1 to 12 and water uptake of 17 mol/mol prompted us to study the proton exchange of the µ2 -OH, µ3 -OH of the IBU and -COOH groups of the linker by titration with LiOH. Comparison of the pKa values with three UiO-66 derivatives confirms distinct pKa value ranges and trends for the different acidic protons. Furthermore, the preparation of Zr-CAU-61 membranes and first results on permeation of dyes and ions in aqueous solutions are presented.

3.
Inorg Chem ; 62(31): 12252-12259, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37384893

ABSTRACT

We report the synthesis and in-depth characterization of three zirconium chelidamates, a molecular complex (H8C2N)2[Zr(HL)3] (1), a porous metal-containing hydrogen-bonded organic framework (M-HOF) [Zr(H2O)2(HL)2]·xH2O (2), and a metal-organic framework (MOF) (H8C2N)2-2n[Zr(HnL)2]·x solvent (0 ≤ n ≤ 1) (3) using chelidamic acid (H3L, H5C7NO5, 4-hydroxypyridine-2,6-dicarboxylic acid) as the ligand (H8C2N+ = dimethylammonium). High-throughput investigations of the system Zr4+/H3L/HCl/DMF/H2O were carried out, which resulted in highly crystalline compounds. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. Single-crystal three-dimensional (3D) electron diffraction and Rietveld refinements of powder X-ray diffraction (PXRD) data had to be used to elucidate the crystal structure of 3 since only very small single crystals of about 500 nm in diameter could be obtained. In all structures, chelidamate ions act as anionic palindromic pincer ligands, and in 3, a coordinative bond is additionally formed by the aryloxy group. While dense packing of the molecular complexes is found in 1, hydrogen bonding of the molecular complexes in 2 leads to a porous network that shows flexibility depending on the water content. The three-dimensional framework structure of the Zr-MOF 3 contains a mononuclear inorganic building unit (IBU), which is very uncommon in Zr-MOF chemistry. The three compounds are stable in several organic solvents, and thermal decomposition starts above 280 °C. While the hydrogen-bonded framework 2 is only porous toward water with a water uptake of almost 3.75 mol mol-1 at p/p0 = 0.9, 3 is porous against N2, CO2, methanol, ethanol, and water with a specific Brunauer-Emmett-Teller (BET) surface area of aS,BET = 410 m2 g-1 derived from the N2 adsorption isotherm. Stability upon water adsorption covering 10 cycles between 0.5% < p/p0 < 90% for 3 is also demonstrated.

4.
Inorg Chem ; 62(1): 35-42, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36346925

ABSTRACT

To access porous metal phosphonates, a new V-shaped, rigid, and sterically demanding diphosphonic acid, namely 3,6-diphosphono-9H-carbazole (H4L), was designed and employed in a high-throughput investigation. Screening of different metal salts and subsequent optimization studies resulted in the isolation of two porous metal phosphonates [Cu2(H2O)2(L)]·2H2O (CAU-37) and [Zn6.75(H2O)1.5(HL)2.5(L)1.5]·8H2O (CAU-57). Structure determination was accomplished by electron diffraction and the dehydration behavior of CAU-37 was followed in situ. A rare case of intralayer water de-/adsorption in CAU-37 was found which leads to a cell volume change of 11.9%. Rod-shaped inorganic building units (IBUs) are connected to layers and structural flexibility is due to "accordion-like" structural changes within the layers. In contrast, in CAU-57 a layered IBU is found, which usually results in the formation of dense structures. Due to the shape and rigidity of the linker, the interconnection of the IBUs results in the formation of pores. Water sorption measurements in combination with powder X-ray diffraction data confirmed the reversibility under structural retention.

5.
Inorg Chem ; 62(13): 5176-5185, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36960951

ABSTRACT

The use of the V-shaped linker molecules 4,4'-oxydibenzoic acid (H2ODB) and 4,4'-carbonyldibenzoic acid (H2CDB) led to the discovery of two isoreticular Ce(IV)-based metal-organic frameworks (MOFs) of composition [CeO(H2O)(L)], L = ODB2-, CDB2-, denoted CAU-58 (CAU = Christian-Albrechts-University). The recently developed Ce-MOF synthesis approach in acetonitrile as the solvent proved effective in accessing Ce(IV)-MOF structures with infinite rod-shaped inorganic building units (IBUs) and circumventing the formation of the predominantly observed hexanuclear [Ce6O8] cluster. For the structure determination of the isoreticular MOFs, three-dimensional electron diffraction (3D ED) and powder X-ray diffraction (PXRD) data were used in combination with density functional theory (DFT) calculations. [CeO(H2O)(CDB)] shows reversible H2O adsorption by stirring in water and thermal treatment at 190 °C, which leads to a unit cell volume change of 11%. The MOFs feature high thermal stabilities (T > 290 °C), which exceed those of most Ce(IV)-MOFs and can be attributed to the infinite rod-shaped IBU. Surface and bulk oxidation states of the cerium ions were analyzed via X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES). While Ce(III) ions are observed by the highly surface-sensitive XPS method, the bulk material contains predominantly Ce(IV) ions according to XANES. Application of the MOFs as catalysts for the catalytic degradation of methyl orange in aqueous solutions was also studied. While degradation activity for both MOFs was observed, only CAU-58-ODB revealed enhanced photocatalytic activity under ultraviolet (UV) light. The photocatalytic mechanism likely involves a ligand-to-metal charge transfer (LMCT) from the linkers to the Ce(IV) centers. Analyses by XANES and inductively coupled plasma-optical emission spectroscopy (ICP-OES) demonstrate that leaching of Cerium ions as well as partial reduction of Ce(IV) to Ce(III) takes place during catalysis. At the same time, PXRD data confirm the structural stability of the remaining MOF catalysts.

6.
Inorg Chem ; 62(51): 20929-20939, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38048322

ABSTRACT

We report the discovery and characterization of two porous Ce(III)-based metal-organic frameworks (MOFs) with the V-shaped linker molecules 4,4'-sulfonyldibenzoate (SDB2-) and 4,4'-(hexafluoroisopropylidene)bis(benzoate) (hfipbb2-). The compounds of framework composition [Ce2(H2O)(SDB)3] (1) and [Ce2(hfipbb)3] (2) were obtained by using a synthetic approach in acetonitrile that we recently established. Structure determination of 1 was accomplished from 3D electron diffraction (3D ED) data, while 2 could be refined against powder X-ray diffraction (PXRD) data using the crystal structure of an isostructural La-MOF as the starting model. Their framework structures consist of chain-like inorganic building units (IBUs) or hybrid-BUs that are interconnected by the V-shaped linker molecules to form framework structures with channel-type pores. The composition of both compounds was confirmed by PXRD, elemental analysis, as well as NMR and IR spectroscopy. Interestingly, despite the use of (NH4)2[CeIV(NO3)6] in the synthesis, cerium ions in both MOFs occur exclusively in the + III oxidation state as determined by X-ray absorption near edge structure (XANES) and X-ray photoelectron spectroscopy (XPS). Thermal analyses reveal remarkably high thermal stabilities of ≥400 °C for the MOFs. Initial N2 sorption measurements revealed the peculiar sorption behavior of 2 which prompted a deeper investigation by Ar and CO2 sorption experiments. The combination with nonlocal density functional theory (NL-DFT) calculations adds to the understanding of the nature of the different pore diameters in 2. An extensive quasi-simultaneous in situ XANES/XRD investigation was carried out to unveil the formation of Ce-MOFs during the solvothermal syntheses in acetonitrile. The crystallization of the two Ce(III)-MOFs presented herein as well as two previously reported Ce(IV)-MOFs, all obtained by a similar synthetic approach, were studied. While the XRD patterns show time-dependent MOF crystallization, the XANES data reveal the presence of Ce(III) intermediates and their subsequent conversion to the MOFs. The addition of acetic acid in combination with the V-shaped linker molecule was identified as the crucial factor for the formation of the crystalline Ce(III/IV)-MOFs.

7.
Angew Chem Int Ed Engl ; 62(26): e202303561, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37032313

ABSTRACT

A concept for obtaining isoreticular compounds with tri- instead of tetravalent metal cations using highly acidic reaction conditions was developed and successfully applied in a high throughput study using N,N'-piperazinebis(methylenephosphonic acid) (H4 PMP), that resulted in the discovery of a new porous aluminium phosphonate denoted CAU-60⋅6 HCl. The high-throughput study was subsequently extended to other trivalent metal ions. Al-CAU-60⋅6 HCl demonstrates reversible desorption of HCl (18.3 wt % loading) with three distinct compositions observed with zero, four or six HCl molecules per formula unit. Structural changes were followed in detail by powder X-ray diffraction, EDX analysis as well as IR spectroscopy. Rapid desorption of HCl in water within minutes and subsequent adsorption from the gas phase and from aqueous solution are shown. Furthermore, it is possible to adsorb HBr into the guest free Al-CAU-60 framework, demonstrating the high stability of this compound.


Subject(s)
Metal-Organic Frameworks , Organophosphonates , Aluminum , Adsorption , Porosity , Water
8.
Angew Chem Int Ed Engl ; 62(29): e202218679, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37102303

ABSTRACT

The solution chemistry of aluminum is highly complex and various polyoxocations are known. Here we report on the facile synthesis of a cationic Al24 cluster that forms porous salts of composition [Al24 (OH)56 (CH3 COO)12 ]X4 , denoted CAU-55-X, with X=Cl- , Br- , I- , HSO4 - . Three-dimensional electron diffraction was employed to determine the crystal structures. Various robust and mild synthesis routes for the chloride salt [Al24 (OH)56 (CH3 COO)12 ]Cl4 in water were established resulting in high yields (>95 %, 215 g per batch) within minutes. Specific surface areas and H2 O capacities with maximum values of up to 930 m2 g-1 and 430 mg g-1 are observed. The particle size of CAU-55-X can be tuned between 140 nm and 1250 nm, permitting its synthesis as stable dispersions or as highly crystalline powders. The positive surface charge of the particles, allow fast and effective adsorption of anionic dye molecules and adsorption of poly- and perfluoroalkyl substances (PFAS).

9.
J Am Chem Soc ; 144(31): 14322-14329, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35849509

ABSTRACT

The fine-tuning of the pore structure of metal-organic frameworks (MOFs) is of critical importance to developing energy-efficient processes for the challenging separation of structurally similar molecules. Herein, we demonstrate a strategy to realize a quasi-three-dimensional refinement of the pore structure that utilizes the tunability of ring size and number in polycycloalkane-dicarboxylate ligands. Two hydrolytically stable MOFs with a confined aliphatic pore environment, ZUL-C1 and ZUL-C2, were, for the first time, synthesized and applied in separating low-concentration C2-C3 hydrocarbons from natural gas and ultralow-concentration Xe from used nuclear fuel (UNF) off-gas. Validated by X-ray diffraction and modeling, an expansion of the polycycloalkane moiety enables sub-angstrom contraction in specific directions and forms a pore surface with more alkyl sites, which affords stronger trapping of guest molecules with relatively higher polarizability. The resultant material exhibits record C2H6/CH4 and C3H8/CH4 selectivities coupled with a benchmark low-pressure C2H6 capacity in alkane mixture separation and also a benchmark Xe capacity at extremely diluted feed concentration and record Kr productivity for the Xe/Kr (20:80, v/v) mixture in Xe/Kr separation.

10.
Chemistry ; 27(21): 6579-6592, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33480453

ABSTRACT

We report on the results of an in situ synchrotron powder X-ray diffraction study of the crystallisation in aqueous medium of two recently discovered perfluorinated CeIV -based metal-organic frameworks (MOFs), analogues of the already well investigated ZrIV -based UiO-66 and MIL-140A, namely, F4_UiO-66(Ce) and F4_MIL-140A(Ce). The two MOFs were originally obtained in pure form in similar conditions, using ammonium cerium nitrate and tetrafluoroterephthalic acid as reagents, and small variations of the reaction parameters were found to yield mixed phases. Here, we investigate the crystallisation of these compounds, varying parameters such as temperature, amount of the protonation modulator nitric acid and amount of the coordination modulator acetic acid. When only HNO3 is present in the reaction environment, only F4_MIL-140A(Ce) is obtained. Heating preferentially accelerates nucleation, which becomes rate determining below 57 °C. Upon addition of AcOH to the system, alongside HNO3 , mixed-phased products are obtained. F4_UiO-66(Ce) is always formed faster, and no interconversion between the two phases occurs. In the case of F4_UiO-66(Ce), crystal growth is always the rate-determining step. A higher amount of HNO3 favours the formation of F4_MIL-140A(Ce), whereas increasing the amount of AcOH favours the formation of F4_UiO-66(Ce). Based on the in situ results, a new optimised route to achieving a pure, high-quality F4_MIL-140A(Ce) phase in mild conditions (60 °C, 1 h) is also identified.

11.
Chemistry ; 27(28): 7696-7703, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33566437

ABSTRACT

The reaction of the V-shaped linker molecule 5-hydroxyisophthalic acid (H2 L0 ), with Al or Ga nitrate under almost identical reaction conditions leads to the nitration of the linker and subsequent formation of metal-organic frameworks (MOFs) with CAU-10 or MIL-53 type structure of composition [Al(OH)(L)], denoted as Al-CAU-10-L0, 2, 4, 6 or [Ga(OH)(L)], denoted as Ga-MIL-53-L2 . The Al-MOF contains the original linker L0 as well as three different nitration products (L2 , L4 and L4/6 ), whereas the Ga-MOF mainly incorporates the linker L2 . The compositions were deduced by 1 H NMR spectroscopy and confirmed by Rietveld refinement. In situ and ex situ studies were carried out to follow the nitration and crystallization, as well as the composition of the MOFs. The crystal structures were refined against powder X-ray diffraction (PXRD) data. As anticipated, the use of the V-shaped linker results in the formation of the CAU-10 type structure in the Al-MOF. Unexpectedly, the Ga-MOF crystallizes in a MIL-53 type structure, which is usually observed with linear or slightly bent linker molecules. To study the structure directing effect of the in situ nitrated linker, pure 2-nitrobenzene-1,3-dicarboxylic acid (m-H2 BDC-NO2 ) was employed which exclusively led to the formation of [Ga(OH)(C8 H3 NO6 )] (Ga-MIL-53-m-BDC-NO2 ), which is isoreticular to Ga-MIL-53-L2 . Density Functional Theory (DFT) calculations confirmed the higher stability of Ga-MIL-53-L2 compared to Ga-CAU-10-L2 and grand canonical Monte Carlo simulations (GCMC) are in agreement with the observed water adsorption isotherms of Ga-MIL-53-L2 .

12.
Chemistry ; 27(12): 4098-4107, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33226154

ABSTRACT

A Zr-based metal-organic framework has been synthesized and employed as a catalyst for photochemical carbon dioxide reduction coupled with water oxidation. The catalyst shows significant carbon dioxide reduction property with concomitant water oxidation. The catalyst has broad visible light as well as UV light absorption property, which is further confirmed from electronic absorption spectroscopy. Formic acid was the only reduced product from carbon dioxide with a turn-over frequency (TOF) of 0.69 h-1 in addition to oxygen, which was produced with a TOF of 0.54 h-1 . No external photosensitizer is used and the ligand itself acts as the light harvester. The efficient and selective photochemical carbon dioxide reduction to formic acid with concomitant water oxidation using Zr-based MOF as catalyst is thus demonstrated here.

13.
Inorg Chem ; 60(12): 8861-8869, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34105945

ABSTRACT

Following the concept of isoreticular chemistry, we carried out a systematic study on Ga-containing metal-organic frameworks (MOFs) using six V-shaped linker molecules of differing sizes, geometries, and additional functional groups. The linkers included three isophthalic acid derivatives (m-H2BDC-R, R = CH3, OCH3, NHCOCH3), thiophene-2,5-dicarboxylic acid (H2TDC), and two 4,4'-sulfonyldibenzoic acid derivatives (H2SDBA, DPSTA). The crystal structures of seven compounds were elucidated by a combination of model building, single-crystal X-ray diffraction (SCXRD), three-dimensional electron diffraction (3D ED), and Rietveld refinements against powder X-ray diffraction (PXRD) data. Four new Ga-MOFs that are isoreticular with their aluminum counterparts, i.e. Ga-CAU-10-R (Ga(OH)(m-BDC-R); R = OCH3, NHCOCH3), Ga-CAU-11 (Ga(OH)(SDBA)), and Ga-CAU-11-COOH (Ga(OH)(H2DPSTC)), were obtained. For the first time large single crystals of a MOF crystallizing in the CAU-10 structure type could be isolated, i.e. Ga-CAU-10-OCH3, which permitted a detailed structural characterization. In addition, the use of 5-methylisophthalic acid and thiophene-2,5-dicarboxylic acid resulted in two new Ga-MOFs denoted Ga-CAU-49 and Ga-CAU-51, respectively, which are not isostructural with any known Al-MOF. The crystal structure of Ga-CAU-49 ([Ga4(m-HBDC-CH3)2(m-BDC-CH3)3(OH)4(H2O)]) contains an unprecedented rod-shaped inorganic building unit (IBU) of the formula ∞1{Ga16(OH)18O60}, composed of corner-sharing GaO5 and GaO6 polyhedra. In Ga-CAU-51 ([Ga(OH)(C5H2O2S)]) chains of alternating cis and trans corner-sharing GaO6 polyhedra form the IBU. A detailed characterization of the title compounds was carried out, including nitrogen gas and water vapor sorption measurements. Ga-CAU-11 was the only compound exhibiting porosity toward nitrogen with a type I isotherm, a specific surface area of aS,BET = 210 m2/g, and a micropore volume of Vmic = 0.09 cm3/g. The new MOF Ga-CAU-51 exhibits exceptional water sorption properties with a reversible S-shaped isotherm and a high uptake around p/p0 = 0.38 of mads = 370 mg/g.

14.
J Am Chem Soc ; 142(37): 15995-16000, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32820922

ABSTRACT

A new layered mesoporous Zr-MOF of composition [Zr30O20(OH)26(OAc)18L18] was synthesized by employing 5-acetamidoisophthalic acid (H2L) using acetic acid as the solvent. The new MOF, denoted as CAU-45, exhibits a honeycomb structure of stacked layers which comprise both hexa- and dodecanucelar zirconium clusters. Its structure was solved from submicrometer-sized crystals by continuous rotation electron diffraction (cRED). Liquid phase exfoliation and size selection were successfully performed on the material.

15.
Chemistry ; 26(17): 3877-3883, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-31991507

ABSTRACT

Herein is reported the utilization of acetonitrile as a new solvent for the synthesis of the three significantly different benchmark metal-organic frameworks (MOFs) CAU-10, Ce-UiO-66, and Al-MIL-53 of idealized composition [Al(OH)(ISO)], [Ce6 O4 (OH)4 (BDC)6 ], and [Al(OH)(BDC)], respectively (ISO2- : isophthalate, BDC2- : terephthalate). Its use allowed the synthesis of Ce-UiO-66 on a gram scale. While CAU-10 and Ce-UiO-66 exhibit properties similar to those reported elsewhere for these two materials, the obtained Al-MIL-53 shows no structural flexibility upon adsorption of hydrophilic or hydrophobic guest molecules such as water and xenon and is stabilized in its large-pore form over a broad temperature range (130-450 K). The stabilization of the large-pore form of Al-MIL-53 was attributed to a high percentage of noncoordinating -COOH groups as determined by solid-state NMR spectroscopy. The defective material shows an unusually high water uptake of 310 mg g-1 within the range of 0.45 to 0.65 p/p°. In spite of showing no breathing effect upon water adsorption it exhibits distinct mechanical properties. Thus, mercury intrusion porosimetry studies revealed that the solid can be reversibly forced to breathe by applying moderate pressures (≈60 MPa).

16.
Chemistry ; 26(47): 10841-10848, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32476184

ABSTRACT

Energy-efficient indoors temperature and humidity control can be realised by using the reversible adsorption and desorption of water in porous materials. Stable microporous aluminium-based metal-organic frameworks (MOFs) present promising water sorption properties for this goal. The development of synthesis routes that make use of available and affordable building blocks and avoid the use of organic solvents is crucial to advance this field. In this work, two scalable synthesis routes under mild reaction conditions were developed for aluminium-based MOFs: (1) in aqueous solutions using a continuous-flow reactor and (2) through the vapour-assisted conversion of solid precursors. Fumaric acid, its methylated analogue mesaconic acid, as well as mixtures of the two were used as linkers to obtain polymorph materials with tuneable water sorption properties. The synthesis conditions determine the crystal structure and either the MIL-53 or MIL-68 type structure with square-grid or kagome-grid topology, respectively, is formed. Fine-tuning resulted in new MOF materials thus far inaccessible through conventional synthesis routes. Furthermore, by varying the linker ratio, the water sorption properties can be continuously adjusted while retaining the sigmoidal isotherm shape advantageous for heat transformation and room climatisation applications.

17.
Chemphyschem ; 21(7): 605-609, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32045082

ABSTRACT

The proton conduction properties of a phosphonato-sulfonate-based coordination polymer are studied by impedance spectroscopy using a single crystal specimen. Two distinct conduction mechanisms are identified. Water-mediated conductance along the crystal surface occurs by mass transport, as evidenced by a high activation energy (0.54 eV). In addition, intrinsic conduction by proton 'hopping' through the interior of the crystal with a low activation energy (0.31 eV) is observed. This latter conduction is anisotropic with respect to the crystal structure and seems to occur through a channel along the c axis of the orthorhombic crystal. Proton conduction is assumed to be mediated by sulfonate groups and non-coordinating water molecules that are part of the crystal structure.

18.
Inorg Chem ; 59(18): 13343-13352, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32869998

ABSTRACT

Following the strategy of installing porosity in coordination polymers predefined by linker geometry, we employed the new tetratopic linker molecule 1,1,2,2-tetrakis[4-phosphonophenyl]ethylene (H8TPPE) for the synthesis of new porous metal phosphonates. A high-throughput study was carried out using Ni2+ and Co2+ as metal ions, and a very strong influence of the reactor size on the product formation is observed while maintaining the same reaction parameters. Using small autoclaves (V = 250 µL), single crystals of isostructural mononuclear complexes of the composition [Ni(H3DPBP)2(H2O)4] (1) and [Co(H3DPBP)2(H2O)4] (2) are formed. They contain the linker molecule H4DPBP (4,4'-diphosphonobenzophenone), which is formed in situ by oxidation of H8TPPE. Using autoclaves with a volume of V = 2 mL, two new 3D metal-organic frameworks (MOFs) of composition [Ni2(H4TPPE)(H2O)6]·4H2O (CAU-46) and [Co2(H4TPPE)(H2O)4]·3H2O (CAU-47) were isolated in bulk quantities, and their crystal structures were determined from three-dimensional electron diffraction (3D ED) and powder X-ray diffraction data. Using even larger autoclaves (V = 30 mL), another 3D MOF of the composition [Co2(H4TPPE)]·6H2O (Co-CAU-48) was obtained, and a structure model was established via 3D ED measurements. Remarkably, the isostructural compound [Ni2(H4TPPE)]·9H2O (Ni-CAU-48) is only obtained indirectly, i.e., via thermal activation of CAU-46. As the chosen linker geometry leads to the formation of MOFs, topological analyses were carried out, highlighting the different connectivities observed in the three frameworks. Porosity of the compounds was proven via water sorption experiments, resulting in uptakes of 126 mg/g (CAU-46), 105 mg/g (CAU-47), 210 mg/g (Ni-CAU-48), and 109 mg/g (Co-CAU-48).

19.
Inorg Chem ; 59(20): 15250-15261, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-32993295

ABSTRACT

Acetic acid, an alternative green solvent, was utilized for the solvothermal synthesis of four 2D materials of composition [Zr2O2(OAc)2(BDC-F)], [Zr2O2(OAc)2(BDC-F4)], [Zr2O2(OAc)2(BDC)], and [Zr2O2(OAc)2(NDC)] (BDC, terephthalate; BDC-F, 2-fluoroterephthalate; BDC-F4, tetrafluoroterephthalate; NDC, 2,6-naphthalenedicarboxylate). The first three compounds were subsequently reacted with terephthalic acid in solid-state reactions to form porous MIL-140A-type metal-organic frameworks and mixed-linker derivatives ([ZrO(BDC)1-x(BDC-Y)x], x = 0-0.18, Y = F, F4). The reaction kinetics of the formation of MIL-140A were investigated with the aid of time-resolved synchrotron and temperature-resolved in-house X-ray powder diffraction experiments. Thorough compositional analyses and solid-state NMR spectroscopic experiments were used to assess the crystallographic ordering of the different linker molecules. Additionally, acetic acid-based routes for the direct synthesis of MIL-140A-NO2 and a novel MIL-140A-(CH3)2 derivative were discovered.

20.
Inorg Chem ; 59(14): 9969-9978, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32628458

ABSTRACT

The metallocene-based linker molecule 1,1'-ferrocenedicarboxylic acid (H2FcDC) was used to synthesize four different polymorphs of composition [In(OH)(FeC12H8O4)]. Using conventional solvent-based synthesis methods and varying the synthetic parameters such as metal source, reaction temperature, and solvent, two different MOFs and one 1D-coordination polymer denoted as CAU-43 (1), In-MIL-53-FcDC_a (2), and In-FcDC (3) were obtained. Furthermore, thermal treatment of CAU-43 (1) at 190 °C under vacuum yielded a new polymorph of 2, In-MIL-53-FcDC_b (4). Both MOFs 2 and 4 crystallize in a MIL-53 type structure, but in different space groups C2/m for 2 and P1̅ for 4. The structures of the four title compounds were determined by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), or a combination of three-dimensional electron diffraction measurements (3D ED) and PXRD. N2 sorption experiments of 1, 2, and 4 showed specific surface areas of 355 m2 g-1, 110 m2 g-1, and 140 m2 g-1, respectively. Furthermore, the electronic properties of the title compounds were characterized via Mössbauer and EPR spectroscopy. All Mössbauer spectra showed the characteristic doublet, proving the persistence of the ferrocene moiety. In the cases of 1, 3, and 4, appreciable impurities of ferrocenium ions could be detected by electron paramagnetic resonance spectroscopy. Cyclovoltammetric experiments were performed to demonstrate the accessible redox activity of the linker molecule of the title compounds. A redox process of FcDC2- with oxidation (between 0.86 and 0.97 V) and reduction wave (between 0.69 and 0.80 V) was observed.

SELECTION OF CITATIONS
SEARCH DETAIL