Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
J Environ Manage ; 365: 121491, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924886

ABSTRACT

Many Oil and Gas (O&G) fields in the North Sea have produced their economically recoverable reserves and have entered the decommissioning phase or are close to cessation of production. The subsequent O&G decommissioning process involves a range of stakeholders with specific interests and priorities. This range of inputs to the process highlights the necessity for the development of multi-criteria decision frameworks to help guide the decision-making process. This study presents bottom-up formulations for the economic, environmental, and safety risk criteria to support the multi-criteria decision analysis within the Comparative Assessment (CA) of O&G pipeline decommissioning projects in the North Sea. The approach adapts current guidelines in the O&G industry and considers a range of parameters to provide estimations for the costs, energy usage, greenhouse gas emissions, and safety risks. To verify the effectiveness of the proposed bottom-up formulations, the longest oil export pipeline in the Brent field, PL001/N0501 is selected as a case study. The numerical results revealed the consistency of the results obtained from the proposed approach with those reported in the technical documents by industry. In most cases, the formulations provide estimates with less than 10% differences for the costs, energy usage, emissions, and safety risks. Based on the proposed multi-criteria formulations, the study also presents the use of an immersive decision-making environment within a marine simulator system to help inform the decision-making process by stakeholders.


Subject(s)
Gases , Oil and Gas Industry , Oils , North Sea , Gases/economics , Oils/economics , Oil and Gas Industry/economics , Safety , Carbon Footprint , Decision Making
2.
Syst Biol ; 71(2): 301-319, 2022 02 10.
Article in English | MEDLINE | ID: mdl-33983440

ABSTRACT

The tree of life is the fundamental biological roadmap for navigating the evolution and properties of life on Earth, and yet remains largely unknown. Even angiosperms (flowering plants) are fraught with data gaps, despite their critical role in sustaining terrestrial life. Today, high-throughput sequencing promises to significantly deepen our understanding of evolutionary relationships. Here, we describe a comprehensive phylogenomic platform for exploring the angiosperm tree of life, comprising a set of open tools and data based on the 353 nuclear genes targeted by the universal Angiosperms353 sequence capture probes. The primary goals of this article are to (i) document our methods, (ii) describe our first data release, and (iii) present a novel open data portal, the Kew Tree of Life Explorer (https://treeoflife.kew.org). We aim to generate novel target sequence capture data for all genera of flowering plants, exploiting natural history collections such as herbarium specimens, and augment it with mined public data. Our first data release, described here, is the most extensive nuclear phylogenomic data set for angiosperms to date, comprising 3099 samples validated by DNA barcode and phylogenetic tests, representing all 64 orders, 404 families (96$\%$) and 2333 genera (17$\%$). A "first pass" angiosperm tree of life was inferred from the data, which totaled 824,878 sequences, 489,086,049 base pairs, and 532,260 alignment columns, for interactive presentation in the Kew Tree of Life Explorer. This species tree was generated using methods that were rigorous, yet tractable at our scale of operation. Despite limitations pertaining to taxon and gene sampling, gene recovery, models of sequence evolution and paralogy, the tree strongly supports existing taxonomy, while challenging numerous hypothesized relationships among orders and placing many genera for the first time. The validated data set, species tree and all intermediates are openly accessible via the Kew Tree of Life Explorer and will be updated as further data become available. This major milestone toward a complete tree of life for all flowering plant species opens doors to a highly integrated future for angiosperm phylogenomics through the systematic sequencing of standardized nuclear markers. Our approach has the potential to serve as a much-needed bridge between the growing movement to sequence the genomes of all life on Earth and the vast phylogenomic potential of the world's natural history collections. [Angiosperms; Angiosperms353; genomics; herbariomics; museomics; nuclear phylogenomics; open access; target sequence capture; tree of life.].


Subject(s)
Magnoliopsida , Genomics , High-Throughput Nucleotide Sequencing , Humans , Magnoliopsida/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL