Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nature ; 628(8007): 355-358, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38030722

ABSTRACT

Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.


Subject(s)
Insecticides , Pesticides , Bees , Animals , Pesticides/toxicity , Insecticides/toxicity , Neonicotinoids/toxicity , Agriculture , Pollen
2.
J Environ Manage ; 366: 121814, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39008927

ABSTRACT

The United Nations System of Environmental-Economic Accounting Ecosystem Accounting (SEEA EA) framework is the international standard for ecosystem accounting. To date, application of SEEA EA has been predominantly at large scales, usually at landscape and national levels. However, many environmental management decisions are taken locally, in site-specific contexts. While the use of SEEA EA continues to develop at all scales, there is currently no widely endorsed methodology for employing SEEA EA at local scales, such as the site level. We present a methodology for developing site-level ecosystem accounts, describing the important decisions at each step of the process. We also provide two case studies that demonstrate the context-dependent nature of the decision-making process of ecosystem accounting at small scales. The two major challenges for site-level accounting are stakeholder engagement and data availability. As the use of SEEA EA continues to increase in policy and decision-making processes worldwide, there is a need for local-scale case studies that adapt this methodology across a broad range of contexts. Our case studies provide some of the first published examples of the application of SEEA EA at the site level and are intended to promote consistent implementation of ecosystem accounting across scales.


Subject(s)
Conservation of Natural Resources , Decision Making , Ecosystem , United Nations
3.
J Exp Biol ; 226(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36861783

ABSTRACT

Fungicides and herbicides are two of the most heavily applied pesticide classes in the world, but receive little research attention with regards to their potential impacts on bees. As they are not designed to target insects, the mechanisms behind potential impacts of these pesticides are unclear. It is therefore important to understand their influence at a range of levels, including sublethal impacts on behaviours such as learning. We used the proboscis extension reflex (PER) paradigm to assess how the herbicide glyphosate and the fungicide prothioconazole affect bumblebee olfactory learning. We also assessed responsiveness, and compared the impacts of these active ingredients and their respective commercial formulations (Roundup Biactive and Proline). We found that learning was not impaired by either formulation but, of the bees that displayed evidence of learning, exposure to prothioconazole active ingredient increased learning level in some situations, while exposure to glyphosate active ingredient resulted in bumblebees being less likely to respond to antennal stimulation with sucrose. Our data suggest that fungicides and herbicides may not negatively impact olfactory learning ability when bumblebees are exposed orally to field-realistic doses in a lab setting, but that glyphosate has the potential to cause changes in responsiveness in bees. As we found impacts of active ingredients and not commercial formulations, this suggests that co-formulants may modify impacts of active ingredients in the products tested on olfactory learning without being toxic themselves. More research is needed to understand the mechanisms behind potential impacts of fungicides and herbicides on bees, and to evaluate the implications of behavioural changes caused by glyphosate and prothioconazole for bumblebee fitness.


Subject(s)
Fungicides, Industrial , Herbicides , Bees , Animals , Herbicides/toxicity , Fungicides, Industrial/toxicity , Learning , Conditioning, Classical , Smell
4.
Environ Sci Technol ; 57(8): 3445-3454, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36780611

ABSTRACT

While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.


Subject(s)
Conservation of Natural Resources , Animals , Conservation of Natural Resources/methods , Food , Life Cycle Stages
5.
Oecologia ; 201(3): 689-701, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36790571

ABSTRACT

Insect pollination, and in particular pollination by bees, is a highly valued ecosystem service that ensures plant reproduction and the production of high-quality crops. Bee activity is known to be influenced by the weather, and as the global climate continues to change, the flying frequency and foraging behaviour of bees may also change. To maximise the benefits of pollination in a changing world, we must first understand how current weather conditions influence the activity of different bee species. This is of particular interest in a country such as Ireland where inclement weather conditions are nominally sub-optimal for foraging. We observed honeybee (Apis mellifera) and buff-tailed bumblebee (Bombus terrestris) activity across a variety of weather conditions at seven apple orchards to determine how four weather variables (temperature, relative humidity, solar radiation, wind) influenced the flight activity of each species. Each orchard contained three honeybee and three bumblebee colonies, and so we were able to observe a colony of each species concurrently in the same weather conditions. Overall, honeybees were more sensitive to changes in weather than bumblebees and could be more predisposed to future changes in within-day weather conditions. Our results indicate bumblebees could compensate for low honeybee activity in inclement conditions, which supports the theory that pollinator diversity provides resilience. This may be particularly important in management of pollinators in crops that flower in the spring when weather is more variable, and to allow varied responses to global climate change.


Subject(s)
Ecosystem , Weather , Bees , Animals , Pollination/physiology , Insecta , Seasons
6.
Nature ; 521(7550): 74-76, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25901684

ABSTRACT

The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.


Subject(s)
Bees/physiology , Diet/veterinary , Food Preferences , Insecticides/analysis , Plant Nectar/chemistry , Animals , Bees/drug effects , Chemoreceptor Cells/drug effects , Chemoreceptor Cells/metabolism , Female , Flowers/chemistry , Flowers/drug effects , Food Preferences/drug effects , Guanidines/adverse effects , Guanidines/analysis , Guanidines/pharmacology , Imidazoles/adverse effects , Imidazoles/analysis , Imidazoles/pharmacology , Insecticides/adverse effects , Insecticides/pharmacology , Male , Neonicotinoids , Nitro Compounds/adverse effects , Nitro Compounds/analysis , Nitro Compounds/pharmacology , Oxazines/adverse effects , Oxazines/analysis , Oxazines/pharmacology , Pollen/chemistry , Pollination , Reproduction/drug effects , Reproduction/physiology , Survival Analysis , Taste/physiology , Thiamethoxam , Thiazoles/adverse effects , Thiazoles/analysis , Thiazoles/pharmacology
7.
Environ Res ; 189: 109873, 2020 10.
Article in English | MEDLINE | ID: mdl-32795671

ABSTRACT

Exposure to Plant Protection Products, PPPs, (fungicides, herbicides and insecticides) is a significant stressor for bees and other pollinators, and has recently been the focus of intensive debate and research. Specifically, exposure through contaminated pollen and nectar is considered pivotal, as it presents the highest risk of PPP exposure across all bee species. However, the actual risk that multiple PPP residues might pose to non-target species is difficult to assess due to the lack of clear evidence of their actual concentrations. To consolidate the existing knowledge of field-realistic residues detected in pollen and nectar directly collected from plants, we performed a systematic literature review of studies over the past 50 years (1968-2018). We found that pollen was the matrix most frequently evaluated and, of the compounds investigated, the majority were detected in pollen samples. Although the overall most studied category of PPPs were the neonicotinoid insecticides, the compounds with the highest median concentrations of residues in pollen were: the broad spectrum carbamate carbofuran (1400 ng/g), the fungicide and nematicide iprodione (524 ng/g), and the organophosphate insecticide dimethoate (500 ng/g). In nectar, the highest median concentration of PPP residues detected were dimethoate (1595 ng/g), chlorothalonil (76 ng/g), and the insecticide phorate (53.5 ng/g). Strong positive correlation was observed between neonicotinoid residues in pollen and nectar of cultivated plant species. The maximum concentrations of several compounds detected in nectar and pollen were estimated to exceed the LD50s for honey bees, bumble bees and four solitary bee species, by several orders of magnitude. However, there is a paucity of information for the biggest part of the world and there is an urgent need to expand the range of compounds evaluated in PPP studies.


Subject(s)
Insecticides , Pesticide Residues , Animals , Bees , Insecticides/analysis , Insecticides/toxicity , Neonicotinoids/analysis , Pesticide Residues/toxicity , Plant Nectar , Pollen , Pollination
8.
Proc Natl Acad Sci U S A ; 113(1): 146-51, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26621730

ABSTRACT

Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.


Subject(s)
Crops, Agricultural/growth & development , Insecta/physiology , Pollination , Animals , Ants/physiology , Bees/physiology , Ecosystem , Flowers/growth & development , Fruit/growth & development , Wasps/physiology
10.
Ecol Lett ; 17(11): 1389-99, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25167890

ABSTRACT

Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.


Subject(s)
Flowers/genetics , Magnoliopsida/genetics , Phylogeny , Pollination , Animals , Bees , Diptera , Models, Biological , Plant Nectar/chemistry
11.
J Exp Biol ; 217(Pt 9): 1620-5, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24526720

ABSTRACT

Bees visit flowers to collect nectar and pollen that contain nutrients and simultaneously facilitate plant sexual reproduction. Paradoxically, nectar produced to attract pollinators often contains deterrent or toxic plant compounds associated with herbivore defence. The functional significance of these nectar toxins is not fully understood, but they may have a negative impact on pollinator behaviour and health, and, ultimately, plant pollination. This study investigates whether a generalist bumblebee, Bombus terrestris, can detect naturally occurring concentrations of nectar toxins. Using paired-choice experiments, we identified deterrence thresholds for five compounds found in the nectar of bee-pollinated plants: quinine, caffeine, nicotine, amygdalin and grayanotoxin. The deterrence threshold was determined when bumblebees significantly preferred a sucrose solution over a sucrose solution containing the compound. Bumblebees had the lowest deterrence threshold for the alkaloid quinine (0.01 mmol l(-1)); all other compounds had higher deterrence thresholds, above the natural concentration range in floral nectar. Our data, combined with previous work using honeybees, suggest that generalist bee species have poor acuity for the detection of nectar toxins. The fact that bees do not avoid nectar-relevant concentrations of these compounds likely indicates that it is difficult for them to learn to associate floral traits with the presence of toxins, thus maintaining this trait in plant populations.


Subject(s)
Bees/physiology , Feeding Behavior/physiology , Plant Nectar/chemistry , Alkaloids/pharmacology , Amygdalin/pharmacology , Animals , Diterpenes/pharmacology
12.
Sci Rep ; 14(1): 3524, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347035

ABSTRACT

Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.


Subject(s)
Bacteria , Pollination , Bees , Animals , Europe
13.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38569959

ABSTRACT

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Subject(s)
Crops, Agricultural , Environmental Monitoring , Pesticides , Pollination , Animals , Bees/physiology , Pesticides/analysis , Pollen , Malus , Environmental Exposure/statistics & numerical data
14.
Sci Total Environ ; 929: 172239, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38583620

ABSTRACT

There are substantial concerns about impaired honey bee health and colony losses due to several poorly understood factors. We used MALDI profiling (MALDI BeeTyping®) analysis to investigate how some environmental and management factors under field conditions across Europe affected the honey bee haemolymph peptidome (all peptides in the circulatory fluid), as a profile of molecular markers representing the immune status of Apis mellifera. Honey bees were exposed to a range of environmental stressors in 128 agricultural sites across eight European countries in four biogeographic zones, with each country contributing eight sites each for two different cropping systems: oilseed rape (OSR) and apple (APP). The full haemolymph peptide profiles, including the presence and levels of three key immunity markers, namely the antimicrobial peptides (AMPs) Apidaecin, Abaecin and Defensin-1, allowed the honey bee responses to environmental variables to be discriminated by country, crop type and site. When considering just the AMPs, it was not possible to distinguish between countries by the prevalence of each AMP in the samples. However, it was possible to discriminate between countries on the amounts of the AMPs, with the Swedish samples in particular expressing high amounts of all AMPs. A machine learning model was developed to discriminate the haemolymphs of bees from APP and OSR sites. The model was 90.6 % accurate in identifying the crop type from the samples used to build the model. Overall, MALDI BeeTyping® of bee haemolymph represents a promising and cost-effective "blood test" for simultaneously monitoring dozens of peptide markers affected by environmental stressors at the landscape scale, thus providing policymakers with new diagnostic and regulatory tools for monitoring bee health.


Subject(s)
Agriculture , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Bees , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Europe , Hematologic Tests , Hemolymph , Environmental Monitoring/methods
15.
PeerJ ; 11: e16319, 2023.
Article in English | MEDLINE | ID: mdl-38025756

ABSTRACT

Background: Mutualistic interactions between plants and their pollinating insects are critical to the maintenance of biodiversity. However, we have yet to demonstrate that we are able to manage the structural properties of these networks for the purposes of pollinator conservation and preserving functional outcomes, such as pollination services. Our objective was to explore the extent of our ability to experimentally increase, decrease, and maintain connectance, a structural attribute that reflects patterns of insect visitation and foraging preferences. Patterns of connectance relate to the stability and function of ecological networks. Methods: We implemented a 2-year field experiment across eight sites in urban Dublin, Ireland, applying four agrochemical treatments to fixed communities of seven flowering plant species in a randomized block design. We spent ~117 h collecting 1,908 flower-visiting insects of 92 species or morphospecies with standardized sampling methods across the 2 years. We hypothesized that the fertilizer treatment would increase, herbicide decrease, and a combination of both maintain the connectance of the network, relative to a control treatment of just water. Results: Our results showed that we were able to successfully increase network connectance with a fertilizer treatment, and maintain network connectance with a combination of fertilizer and herbicide. However, we were not successful in decreasing network connectance with the herbicide treatment. The increase in connectance in the fertilized treatment was due to an increased species richness of visiting insects, rather than changes to their abundance. We also demonstrated that this change was due to an increase in the realized proportion of insect visitor species rather than increased visitation by common, generalist species of floral visitors. Overall, this work suggests that connectance is an attribute of network structure that can be manipulated, with implications for management goals or conservation efforts in these mutualistic communities.


Subject(s)
Fertilizers , Herbicides , Animals , Insecta , Pollination , Plants
16.
Sci Total Environ ; 896: 166214, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37567302

ABSTRACT

In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.


Subject(s)
Brassica napus , Fungicides, Industrial , Honey , Insecticides , Pesticides , Bees , Animals , Pesticides/toxicity , Thiamethoxam , Insecticides/toxicity , Insecticides/analysis , Neonicotinoids/toxicity , Honey/analysis , Brassica napus/chemistry
17.
Sci Total Environ ; 879: 162971, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36958551

ABSTRACT

Cultivation of mass flowering entomophilous crops benefits from the presence of managed and wild pollinators, who visit flowers to forage on pollen and nectar. However, management of these crops typically includes application of pesticides, the presence of which may pose a hazard for pollinators foraging in an agricultural environment. To determine the levels of potential exposure to pesticides, their presence and concentration in pollen and nectar need assessing, both within and beyond the target crop plants. We selected ten pesticide compounds and one metabolite and analysed their occurrence in a crop (Brassica napus) and a wild plant (Rubus fruticosus agg.), which was flowering in field edges. Nectar and pollen from both plants were collected from five spring and five winter sown B. napus fields in Ireland, and were tested for pesticide residues, using QuEChERS and Liquid Chromatography tandem mass spectrometry (LC-MS/MS). Pesticide residues were detected in plant pollen and nectar of both plants. Most detections were from fields with no recorded application of the respective compounds in that year, but higher concentrations were observed in recently treated fields. Overall, more residues were detected in B. napus pollen and nectar than in the wild plant, and B. napus pollen had the highest mean concentration of residues. All matrices were contaminated with at least three compounds, and the most frequently detected compounds were fungicides. The most common compound mixture was comprised of the fungicides azoxystrobin, boscalid, and the neonicotinoid insecticide clothianidin, which was not recently applied on the fields. Our results indicate that persistent compounds like the neonicotinoids, should be continuously monitored for their presence and fate in the field environment. The toxicological evaluation of the compound mixtures identified in the present study should be performed, to determine their impacts on foraging insects that may be exposed to them.


Subject(s)
Fungicides, Industrial , Insecticides , Pesticide Residues , Pesticides , Bees , Plant Nectar/chemistry , Pesticides/analysis , Pesticide Residues/analysis , Fungicides, Industrial/analysis , Chromatography, Liquid , Tandem Mass Spectrometry , Neonicotinoids/analysis , Insecticides/analysis , Pollen/chemistry , Crops, Agricultural/chemistry
18.
Circ Econ Sustain ; 3(1): 77-91, 2023.
Article in English | MEDLINE | ID: mdl-36970551

ABSTRACT

Bioeconomy is proposed as a solution to reduce reliance on fossil resources. However, bioeconomy is not always inherently circular and can mimic the conventional take, make, consume, dispose linear economic model. Agricultural systems will be relied on to provide food, materials, and energy, so unless action is taken, demand for land will inevitably exceed supply. Bioeconomy will have to embrace circularity to enable production of renewable feedstocks in terms of both biomass yield and maintaining essential natural capital. The concept of biocircularity is proposed as an integrated systems approach to the sustainable production of renewable biological materials focusing on extended use, maximum reuse, recycling, and design for degradation from polymers to monomers, while avoiding the "failure" of end of life and minimizing energy demand and waste. Challenges are discussed including sustainable production and consumption; quantifying externalities; decoupling economic growth from depletion; valuing natural ecosystems; design across scales; renewable energy provision; barriers to adoption; and integration with food systems. Biocircularity offers a theoretical basis and measures of success, for implementing sustainable circular bioeconomy.

19.
Genome Biol Evol ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: mdl-37042738

ABSTRACT

All organisms require an immune system to recognize, differentiate, and defend against pathogens. From an evolutionary perspective, immune systems evolve under strong selective pressures exerted by fast-evolving pathogens. However, the functional diversity of the immune system means that different immune components and their associated genes may evolve under varying forms of selection. Insect pollinators, which provide essential ecosystem services, are an important system in which to understand how selection has shaped immune gene evolution as their populations are experiencing declines with pathogens highlighted as a potential contributing factor. To improve our understanding of the genetic variation found in the immune genes of an essential pollinator, we performed whole-genome resequencing of wild-caught Bombus terrestris males. We first assessed nucleotide diversity and extended haplotype homozygosity for canonical immune genes finding the strongest signatures of positive selection acting on genes involved in pathogen recognition and antiviral defense, possibly driven by growing pathogen spread in wild populations. We also identified immune genes evolving under strong purifying selection, highlighting potential constraints on the bumblebee immune system. Lastly, we highlight the potential loss of function alleles present in the immune genes of wild-caught haploid males, suggesting that such genes are potentially less essential for development and survival and represent redundancy in the gene repertoire of the bumblebee immune system. Collectively, our analysis provides novel insights into the recent evolutionary history of the immune system of a key pollinator, highlighting targets of selection, constraints to adaptation, and potential redundancy.


Subject(s)
Adaptation, Physiological , Ecosystem , Male , Bees/genetics , Animals , Acclimatization , Sequence Analysis, DNA , Selection, Genetic
20.
PeerJ ; 11: e15452, 2023.
Article in English | MEDLINE | ID: mdl-37334137

ABSTRACT

Background: Pollinating insects provide economically and ecologically valuable services, but are threatened by a variety of anthropogenic changes. The availability and quality of floral resources may be affected by anthropogenic land use. For example, flower-visiting insects in agroecosystems rely on weeds on field edges for foraging resources, but these weeds are often exposed to agrochemicals that may compromise the quality of their floral resources. Methods: We conducted complementary field and greenhouse experiments to evaluate the: (1) effect of low concentrations of agrochemical exposure on nectar and pollen quality and (2) relationship between floral resource quality and insect visitation. We applied the same agrochemcial treatments (low concentrations of fertilizer, low concentrations of herbicide, a combination of both, and a control of just water) to seven plant species in the field and greenhouse. We collected data on floral visitation by insects in the field experiment for two field seasons and collected pollen and nectar from focal plants in the greenhouse to avoid interfering with insect visitation in the field. Results: We found pollen amino acid concentrations were lower in plants exposed to low concentrations of herbicide, and pollen fatty acid concentrations were lower in plants exposed to low concentrations of fertilizer, while nectar amino acids were higher in plants exposed to low concentrations of either fertilizer or herbicide. Exposure to low fertilizer concentrations also increased the quantity of pollen and nectar produced per flower. The responses of plants exposed to the experimental treatments in the greenhouse helped explain insect visitation in the field study. The insect visitation rate correlated with nectar amino acids, pollen amino acids, and pollen fatty acids. An interaction between pollen protein and floral display suggested pollen amino acid concentrations drove insect preference among plant species when floral display sizes were large. We show that floral resource quality is sensitive to agrochemical exposure and that flower-visiting insects are sensitive to variation in floral resource quality.


Subject(s)
Herbicides , Plant Nectar , Animals , Fertilizers , Pollination/physiology , Pollen , Insecta/physiology , Plant Weeds , Agrochemicals , Amino Acids
SELECTION OF CITATIONS
SEARCH DETAIL