Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Plant Biotechnol J ; 22(4): 929-945, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009862

ABSTRACT

The control of flowering time in maize is crucial for reproductive success and yield, and it can be influenced by environmental stresses. Using the approaches of Ac/Ds transposon and transposable element amplicon sequencing techniques, we identified a Ds insertion mutant in the ZmPRR37 gene. The Ds insertion showed a significant correlation with days to anthesis. Further research indicated that ZmPRR37-CR knockout mutants exhibited early flowering, whereas ZmPRR37-overexpression lines displayed delayed flowering compared to WT under long-day (LD) conditions. We demonstrated that ZmPRR37 repressed the expression of ZmNF-YC2 and ZmNF-YA3 to delay flowering. Association analysis revealed a significant correlation between flowering time and a SNP2071-C/T located upstream of ZmPRR37. The SNP2071-C/T impacted the binding capacity of ZmELF6 to the promoter of ZmPRR37. ZmELF6 also acted as a flowering suppressor in maize under LD conditions. Notably, our study unveiled that ZmPRR37 can enhance salt stress tolerance in maize by directly regulating the expression of ABA-responsive gene ZmDhn1. ZmDhn1 negatively regulated maize salt stress resistance. In summary, our findings proposed a novel pathway for regulating photoperiodic flowering and responding to salt stress based on ZmPRR37 in maize, providing novel insights into the integration of abiotic stress signals into floral pathways.


Subject(s)
Flowers , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/physiology , Zea mays/genetics , Zea mays/metabolism , Photoperiod , Promoter Regions, Genetic , Gene Expression Regulation, Plant/genetics
2.
Plant Cell Environ ; 47(9): 3605-3618, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38747469

ABSTRACT

Drought, as a primary environmental factor, imposes significant constraints on developmental processes and productivity of plants. PHDs were identified as stress-responsive genes in a wide range of eukaryotes. However, the regulatory mechanisms governing PHD genes in maize under abiotic stress conditions are still largely unknown and require further investigation. Here, we identified a mutant, zmvil2, in the EMS mutant library with a C to T mutation in the exon of the Zm00001d053875 (VIN3-like protein 2, ZmVIL2), resulting in premature termination of protein coding. ZmVIL2 belongs to PHD protein family. Compared to WT, zmvil2 mutant exhibited increased sensitivity to drought stress. Consistently, overexpression of ZmVIL2 enhances drought resistance in maize. Y2H, BiFC, and Co-IP experiments revealed that ZmVIL2 directly interacts with ZmFIP37 (FKBP12-interacting protein of 37). zmfip37 knockout mutants also exhibit decreased drought tolerance. Interestingly, we demonstrated that ZmABF4 directly binds to the ZmVIL2 promoter to enhance its activity in yeast one hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and dual luciferase reporter assays. Therefore, we uncovered a novel model ZmABF4-ZmVIL2/ZmFIP37 that promotes drought tolerance in maize. Overall, these findings have enriched the knowledge of the functions of PHD genes in maize and provides genetic resources for breeding stress-tolerant maize varieties.


Subject(s)
Drought Resistance , Gene Expression Regulation, Plant , Plant Proteins , Seedlings , Zea mays , Drought Resistance/genetics , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Seedlings/physiology , Seedlings/genetics , Stress, Physiological , Zea mays/genetics , Zea mays/physiology
3.
Plant Cell Environ ; 47(3): 885-899, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38164019

ABSTRACT

Drought is a major abiotic stress that limits maize production worldwide. Therefore, it is of great importance to improve drought tolerance in crop plants for sustainable agriculture. In this study, we examined the roles of Cys2 /His2 zinc-finger-proteins (C2H2-ZFPs) in maize's drought tolerance as C2H2-ZFPs have been implicated for plant stress tolerance. By subjecting 150 Ac/Ds mutant lines to drought stress, we successfully identified a Ds-insertion mutant, zmc2h2-149, which shows increased tolerance to drought stress. Overexpression of ZmC2H2-149 in maize led to a decrease in both drought tolerance and crop yield. DAP-Seq, RNA-Seq, Y1H and LUC assays additionally showed that ZmC2H2-149 directly suppresses the expression of a positive drought tolerance regulator, ZmHSD1 (hydroxysteroid dehydrogenase 1). Consistently, the zmhsd1 mutants exhibited decreased drought tolerance and grain yield under water deficit conditions compared to their respective wild-type plants. Our findings thus demonstrated that ZmC2H2-149 can regulate ZmHSD1 for drought stress tolerance in maize, offering valuable theoretical and genetic resources for maize breeding programmes that aim for improving drought tolerance.


Subject(s)
Drought Resistance , Zea mays , Zea mays/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Droughts , Stress, Physiological/genetics , Gene Expression Regulation, Plant
4.
J Environ Manage ; 352: 120035, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38244407

ABSTRACT

Creating renewable energy from lignocellulosic biomass is essential for a sustainable future. Due to their abundance and the possibility of producing cheap and clean energy, non-lignocellulosic wastes like sewage sludge from industrial and municipal wastes have drawn attention as a feasible alternative to fossil fuels. These abundant, cost-effective resources may help minimize the effects of climate change since they produce less pollution. Several drawbacks are associated with using sewage sludge in thermal conversion procedures. These issues encompass suboptimal energy yield, elevated ash levels in the final product, and subpar biomass quality. Using these scraps in conjunction with coal might enhance energy conversion processes. This study has revealed the necessity for further investigation into how various combinations of residues interact with each other, influencing synergistic effects and degradation processes. The study's underlying objective was to provide a centralized database on the synergistic effects of mixing biomass and sewage sludge for bioenergy production, coal and biomass, and coal and sewage sludge through thermochemical processes like combustion, pyrolysis, gasification, and hydrolysis with Aspen Plus. This study will assist in enhancing biofuels' output from sewage sludge, coal, and coal/biomass blends in thermal conversion by defining the operating parameters (temperature, heat, and residence duration) of pyrolysis and combustion, features, and chemical properties that may influence these processes.


Subject(s)
Coal , Sewage , Sewage/chemistry , Coal/analysis , Biomass , Fossil Fuels , Hot Temperature
5.
Plant Cell Environ ; 45(2): 312-328, 2022 02.
Article in English | MEDLINE | ID: mdl-34873716

ABSTRACT

Drought stress adversely impacts crop development and yield. Maize frequently encounters drought stress during its life cycle. Improvement of drought tolerance is a priority of maize breeding programs. Here, we identified a novel transcription factor encoding gene, APETALA2 (AP2)/Ethylene response factor (ERF), which is tightly associated with drought tolerance in maize seedlings. ZmERF21 is mainly expressed in the root and leaf and it can be highly induced by polyethylene glycol treatment. Genetic analysis showed that the zmerf21 mutant plants displayed a reduced drought tolerance phenotype, accompanied by phenotypical and physiological changes that are commonly observed in drought conditions. Overexpression of ZmERF21 in maize significantly increased the chlorophyll content and activities of antioxidant enzymes under drought conditions. RNA-Seq and DNA affinity purification sequencing analysis further revealed that ZmERF21 may directly regulate the expression of genes related to hormone (ethylene, abscisic acid) and Ca signaling as well as other stress-response genes through binding to the promoters of potential target genes. Our results thereby provided molecular evidence of ZmERF21 is involved in the drought stress response of maize.


Subject(s)
Droughts , Gene Expression/physiology , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Signal Transduction/genetics , Zea mays/physiology , Gene Expression Regulation, Plant/physiology , Plant Proteins/metabolism , Seedlings/genetics , Seedlings/physiology , Stress, Physiological/genetics , Zea mays/genetics
6.
BMC Plant Biol ; 21(1): 453, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34615461

ABSTRACT

BACKGROUND: Appropriate flowering time is very important to the success of modern agriculture. Maize (Zea mays L.) is a major cereal crop, originated in tropical areas, with photoperiod sensitivity. Which is an important obstacle to the utilization of tropical/subtropical germplasm resources in temperate regions. However, the study on the regulation mechanism of photoperiod sensitivity of maize is still in the early stage. Although it has been previously reported that ZmCCT is involved in the photoperiod response and delays maize flowering time under long-day conditions, the underlying mechanism remains unclear. RESULTS: Here, we showed that ZmCCT overexpression delays flowering time and confers maize drought tolerance under LD conditions. Implementing the Gal4-LexA/UAS system identified that ZmCCT has a transcriptional inhibitory activity, while the yeast system showed that ZmCCT has a transcriptional activation activity. DAP-Seq analysis and EMSA indicated that ZmCCT mainly binds to promoters containing the novel motifs CAAAAATC and AAATGGTC. DAP-Seq and RNA-Seq analysis showed that ZmCCT could directly repress the expression of ZmPRR5 and ZmCOL9, and promote the expression of ZmRVE6 to delay flowering under long-day conditions. Moreover, we also demonstrated that ZmCCT directly binds to the promoters of ZmHY5, ZmMPK3, ZmVOZ1 and ZmARR16 and promotes the expression of ZmHY5 and ZmMPK3, but represses ZmVOZ1 and ZmARR16 to enhance stress resistance. Additionally, ZmCCT regulates a set of genes associated with plant development. CONCLUSIONS: ZmCCT has dual functions in regulating maize flowering time and stress response under LD conditions. ZmCCT negatively regulates flowering time and enhances maize drought tolerance under LD conditions. ZmCCT represses most flowering time genes to delay flowering while promotes most stress response genes to enhance stress tolerance. Our data contribute to a comprehensive understanding of the regulatory mechanism of ZmCCT in controlling maize flowering time and stress response.


Subject(s)
Adaptation, Physiological/genetics , Flowers/growth & development , Flowers/genetics , Photoperiod , Stress, Physiological/genetics , Zea mays/growth & development , Zea mays/genetics , Adaptation, Physiological/physiology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Magnoliopsida/genetics , Magnoliopsida/growth & development , Phenotype , Stress, Physiological/physiology
7.
J Exp Bot ; 72(10): 3582-3596, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33677565

ABSTRACT

Maize is a model plant species often used for genetics and genomics research because of its genetic diversity. There are prominent morphological, genetic, and epigenetic variations between tropical and temperate maize lines. However, the genome-wide chromatin conformations of these two maize types remain unexplored. We applied a Hi-C approach to compare the genome-wide chromatin interactions between temperate inbred line D132 and tropical line CML288. A reconstructed maize three-dimensional genome model revealed the spatial segregation of the global A and B compartments. The A compartments contain enriched genes and active epigenome marks, whereas the B compartments are gene-poor, transcriptionally silent chromatin regions. Whole-genome analyses indicated that the global A compartment content of CML288 was 3.12% lower than that of D132. Additionally, global and A/B sub-compartments were associated with differential gene expression and epigenetic changes between two inbred lines. About 25.3% of topologically associating domains (TADs) were determined to be associated with complex domain-level modifications that induced transcriptional changes, indicative of a large-scale reorganization of chromatin structures between the inbred maize lines. Furthermore, differences in chromatin interactions between the two lines correlated with epigenetic changes. These findings provide a solid foundation for the wider plant community to further investigate the genome-wide chromatin structures in other plant species.


Subject(s)
Chromatin , Zea mays , Epigenesis, Genetic , Genome , Genomics , Zea mays/genetics
8.
J Exp Bot ; 72(22): 7792-7807, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34338753

ABSTRACT

Flowering time is an important agronomic trait that determines the distribution and adaptation of plants. The accurate prediction of flowering time in elite germplasm is critical for maize breeding. However, the molecular mechanisms underlying the photoperiod response remain elusive in maize. Here we cloned the flowering time-controlling gene, ZmNF-YC2, by map-based cloning and confirmed that ZmNF-YC2 is the nuclear transcription factor Y subunit C-2 protein and a positive regulator of flowering time in maize under long-day conditions. Our results show that ZmNF-YC2 promotes the expression of ZmNF-YA3. ZmNF-YA3 negatively regulates the transcription of ZmAP2. ZmAP2 suppresses the expression of ZMM4 to delay flowering time. We then developed a gene regulatory model of flowering time in maize using ZmNF-YC2, ZmNF-YA3, ZmAP2, ZMM4, and other key genes. The cascading regulation by ZmNF-YC2 of maize flowering time has not been reported in other species.


Subject(s)
Gene Expression Regulation, Plant , Zea mays , Flowers/genetics , Flowers/metabolism , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/metabolism
9.
J Exp Bot ; 72(5): 1782-1794, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33270106

ABSTRACT

Leaf angle is an important agronomic trait in cereals and shares a close relationship with crop architecture and grain yield. Although it has been previously reported that ZmCLA4 can influence leaf angle, the underlying mechanism remains unclear. In this study, we used the Gal4-LexA/UAS system and transactivation analysis to demonstrate in maize (Zea mays) that ZmCLA4 is a transcriptional repressor that regulates leaf angle. DNA affinity purification sequencing (DAP-Seq) analysis revealed that ZmCLA4 mainly binds to promoters containing the EAR motif (CACCGGAC) as well as to two other motifs (CCGARGS and CDTCNTC) to inhibit the expression of its target genes. Further analysis of ZmCLA4 target genes indicated that ZmCLA4 functions as a hub of multiple plant hormone signaling pathways: ZmCLA4 was found to directly bind to the promoters of multiple genes including ZmARF22 and ZmIAA26 in the auxin transport pathway, ZmBZR3 in the brassinosteroid signaling pathway, two ZmWRKY genes involved in abscisic acid metabolism, ZmCYP genes (ZmCYP75B1, ZmCYP93D1) related to jasmonic acid metabolism, and ZmABI3 involved in the ethylene response pathway. Overall, our work provides deep insights into the ZmCLA4 regulatory network in controlling leaf angle in maize.


Subject(s)
Plant Leaves , Zea mays , Brassinosteroids , Gene Expression Regulation, Plant , Hormones , Signal Transduction , Zea mays/genetics
10.
Molecules ; 26(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922589

ABSTRACT

In vitro experiments have indicated prebiotic activity of isomaltulose, which stimulates the growth of probiotics and the production of short chain fatty acids (SCFAs). However, the absence of in vivo trials undermines these results. This study aims to investigate the effect of isomaltulose on composition and functionality of gut microbiota in rats. Twelve Sprague-Dawley rats were divided into two groups: the IsoMTL group was given free access to water containing 10% isomaltulose (w/w), and the control group was treated with normal water for five weeks. Moreover, 16S rRNA sequencing showed that ingestion of isomaltulose increased the abundances of beneficial microbiota, such as Faecalibacterium and Phascolarctobacterium, and decreased levels of pathogens, including Shuttleworthia. Bacterial functional prediction showed that isomaltulose affected gut microbial functionalities, including secondary bile acid biosynthesis. Targeted metabolomics demonstrated that isomaltulose supplementation enhanced cholic acid concentration, and reduced levels of lithocholic acid, deoxycholic acid, dehydrocholic acid, and hyodeoxycholic acid. Moreover, the concentrations of propionate and butyrate were elevated in the rats administered with isomaltulose. This work suggests that isomaltulose modulates gut microbiota and the production of SCFAs and secondary bile acids in rats, which provides a scientific basis on the use of isomaltulose as a prebiotic.


Subject(s)
Bile Acids and Salts/metabolism , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/drug effects , Isomaltose/analogs & derivatives , Probiotics/pharmacology , Animals , Glucose Tolerance Test , Isomaltose/pharmacology , Male , RNA, Ribosomal, 16S/metabolism , Rats , Rats, Sprague-Dawley
11.
Plant Cell Environ ; 43(9): 2272-2286, 2020 09.
Article in English | MEDLINE | ID: mdl-32562291

ABSTRACT

The growth and development of maize are negatively affected by various abiotic stresses including drought, high salinity, extreme temperature, and strong wind. Therefore, it is important to understand the molecular mechanisms underlying abiotic stress resistance in maize. In the present work, we identified that a novel NAC transcriptional factor, ZmNST3, enhances maize lodging resistance and drought stress tolerance. ChIP-Seq and expression of target genes analysis showed that ZmNST3 could directly regulate the expression of genes related to cell wall biosynthesis which could subsequently enhance lodging resistance. Furthermore, we also demonstrated that ZmNST3 affected the expression of genes related to the synthesis of antioxidant enzyme secondary metabolites that could enhance drought resistance. More importantly, we are the first to report that ZmNST3 directly binds to the promoters of CESA5 and Dynamin-Related Proteins2A (DRP2A) and activates the expression of genes related to secondary cell wall cellulose biosynthesis. Additionally, we revealed that ZmNST3 directly binds to the promoters of GST/GlnRS and activates genes which could enhance the production of antioxidant enzymes in vivo. Overall, our work contributes to a comprehensive understanding of the regulatory network of ZmNST3 in regulating maize lodging and drought stress resistance.


Subject(s)
Droughts , Plant Proteins/genetics , Transcription Factors/genetics , Zea mays/physiology , Cell Wall/genetics , Cell Wall/metabolism , Cellulose/genetics , Cellulose/metabolism , Dehydration , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Lignin/genetics , Lignin/metabolism , Mutation , Plant Proteins/metabolism , Plants, Genetically Modified , Sequence Analysis, RNA , Transcription Factors/metabolism
12.
J Exp Bot ; 71(10): 2943-2955, 2020 05 30.
Article in English | MEDLINE | ID: mdl-31990030

ABSTRACT

Leaf angle (LA) is a critical agronomic trait in maize, with more upright leaves allowing higher planting density, leading to more efficient light capture and higher yields. A few genes responsible for variation in LA have been identified by map-based cloning. In this study, we cloned maize ZmIBH1-1, which encodes a bHLH transcription factor with both a basic binding region and a helix-loop-helix domain, and the results of qRT-PCR showed that it is a negative regulator of LA. Histological analysis indicated that changes in LA were mainly caused by differential cell wall lignification and cell elongation in the ligular region. To determine the regulatory framework of ZmIBH1-1, we conducted RNA-seq and DNA affinity purification (DAP)-seq analyses. The combined results revealed 59 ZmIBH1-1-modulated target genes with annotations, and they were mainly related to the cell wall, cell development, and hormones. Based on the data, we propose a regulatory model for the control of plant architecture by ZmIBH1-1 in maize.


Subject(s)
Plant Leaves , Zea mays , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Phenotype , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/metabolism
13.
J Exp Bot ; 69(21): 5177-5189, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30137393

ABSTRACT

Nuclear factor-Y (NF-Y) transcription factors are important regulators of several essential biological processes, including embryogenesis, drought resistance, meristem maintenance, and photoperiod-dependent flowering in Arabidopsis. However, the regulatory mechanisms of NF-Ys in maize (Zea mays) are not well understood yet. In this study, we identified an NF-Y transcription factor, ZmNF-YA3. Genome-wide analysis showed that ZmNF-YA3 bound to >6000 sites in the maize genome, 2259 of which are associated with genic sequences. ZmNF-YA3 was found to interact with CONSTANS-like (CO-like) and flowering promoting factor1 (FPF1) through yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Quantitative real-time reverse transcription-PCR (qRT-PCR) combined with yeast one-hybrid assay and EMSA suggested that NF-YA3 could promote early flowering by binding to the FLOWERING LOCUS T-like12 (FT-like12) promoter in maize. Morerover, we also showed that ZmNF-YA3 could improve drought and high-temperature tolerance through binding to the promoter regions of bHLH92, FAMA, and the jasmonic acid activator MYC4, respectively. These results contribute to a comprehensive understanding of the molecular mechanisms and regulatory networks of NF-Y transcription factors in regulating maize flowering time and stress response in maize.


Subject(s)
CCAAT-Binding Factor/genetics , Flowers/physiology , Photoperiod , Plant Proteins/genetics , Zea mays/physiology , CCAAT-Binding Factor/metabolism , Flowers/genetics , Plant Proteins/metabolism , Stress, Physiological , Zea mays/genetics
14.
BMC Plant Biol ; 16(1): 239, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27809780

ABSTRACT

BACKGROUND: Photoperiodism refers to the ability of plants to measure day length to determine the season. This ability enables plants to coordinate internal biological activities with external changes to ensure normal growth. However, the influence of the photoperiod on maize flowering and stress responses under long-day (LD) conditions has not been analyzed by comparative transcriptome sequencing. The ZmCCT gene was previously identified as a homolog of the rice photoperiod response regulator Ghd7, and associated with the major quantitative trait locus (QTL) responsible for Gibberella stalk rot resistance in maize. However, its regulatory mechanism has not been characterized. RESULTS: We mapped the ZmCCT-associated QTL (ZmCCT-AQ), which is approximately 130 kb long and regulates photoperiod responses and resistance to Gibberella stalk rot and drought in maize. To investigate the effects of ZmCCT-AQ under LD conditions, the transcriptomes of the photoperiod-insensitive inbred line Huangzao4 (HZ4) and its near-isogenic line (HZ4-NIL) containing ZmCCT-AQ were sequenced. A set of genes identified by RNA-seq exhibited higher basal expression levels in HZ4-NIL than in HZ4. These genes were associated with responses to circadian rhythm changes and biotic and abiotic stresses. The differentially expressed genes in the introgressed regions of HZ4-NIL conferred higher drought and heat tolerance, and stronger disease resistance relative to HZ4. Co-expression analysis and the diurnal expression rhythms of genes related to stress responses suggested that ZmCCT and one of the circadian clock core genes, ZmCCA1, are important nodes linking the photoperiod to stress tolerance responses under LD conditions. CONCLUSION: Our study revealed that the photoperiod influences flowering and stress responses under LD conditions. Additionally, ZmCCT and ZmCCA1 are important functional links between the circadian clock and stress tolerance. The establishment of this particular molecular link has uncovered a new relationship between plant photoperiodism and stress responses.


Subject(s)
Flowers/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Quantitative Trait Loci/genetics , Stress, Physiological/genetics , Zea mays/genetics , Zea mays/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Photoperiod , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Mol Genet Genomics ; 290(4): 1223-33, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25566854

ABSTRACT

Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development. To investigate the genetic basis of the plant height response to density in maize, we evaluated the effects of two different plant densities (60,000 and 120,000 plant/hm(2)) on three plant height-related traits (plant height, ear height, and ear height-to-plant height ratio) using four sets of recombinant inbred line populations. The phenotypes observed under the two-plant density treatments indicated that high plant density increased the phenotypic performance values of the three measured traits. Twenty-three quantitative trait loci (QTLs) were detected under the two-plant density treatments, and five QTL clusters were located. Nine QTLs were detected under the low plant density treatment, and seven QTLs were detected under the high plant density treatment. Our results suggested that plant height may be controlled mainly by a common set of genes that could be influenced by additional genetic mechanisms when the plants were grown under high plant density. Fine mapping for genetic regions of the stable QTLs across different plant density environments may provide additional information about their different responses to density. The results presented here provide useful information for further research and will help to reveal the molecular mechanisms related to plant height in response to density.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Zea mays/genetics , Genotype , Phenotype , Population Density , Reproducibility of Results , Zea mays/growth & development
17.
Environ Sci Pollut Res Int ; 31(17): 24788-24814, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526717

ABSTRACT

This article provides a comprehensive exploration of the imperative necessity for coupling the utilization of low-rank coal, sewage sludge, and straw. It studies the challenges and limitations of individual utilization methods, addressing the unique hurdles associated with feedstocks. It focused on achieving integrated and sustainable resource management, emphasizing efficient resource utilization, waste minimization, and environmental impact reduction. The investigation extends to the intricate details of reaction processes in co-processing, with a specific emphasis on the drying of raw materials to enhance combustion characteristics. The molding and preparation of feedstock are dissected, encompassing raw material selection, mixing, and the crucial addition of additives and binders. The proportions and homogenization of these feedstocks are intricately examined for uniformity and effectiveness. Furthermore, it presents theoretical approaches for investigating the co-combustion of these diverse feedstocks, contributing a solid foundation for future studies in this dynamic field. The findings presented in it offer valuable insights for researchers, practitioners, and policymakers seeking sustainable solutions in the co-disposal technology of these feedstocks. Therefore, it provides a holistic understanding of the challenges and opportunities in coupling the utilization of these selected feedstocks. By addressing individual limitations and emphasizing integrated resource management, the article establishes the groundwork for sustainable and efficient co-processing practices. The exploration of reaction processes gives a comprehensive framework for future research and application in the field of co-combustion technology. The insights gleaned from this study contribute significantly to advancing knowledge in the sustainable utilization of diverse feedstocks, guiding efforts towards environmentally responsible and resource-efficient practices.


Subject(s)
Coal , Sewage , Coal/analysis , Conservation of Energy Resources , Environment , Desiccation
18.
Food Chem ; 461: 140946, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39191035

ABSTRACT

Species-specific enzymes provide a substantial boost to the precision and selectivity of identifying dairy products contaminated with foodborne pathogens, due to their specificity for target organisms. In this study, we developed cobalt oxyhydroxide nanosheets (CoOOH NSs) for a dual-mode biosensor capable of detecting ß-galactosidase (ß-Gal)-positive bacteria in milk and milk powder. The sensor exploits the oxidase-mimicking activity of CoOOH NSs, where ß-Gal converts the substrate ß-D-galactopyranoside to p-aminophenol, reducing CoOOH NSs to Co2+ and inhibiting the formation of the blue product from 3,3',5,5'-tetramethylben-zidine. Sensitivity was enhanced through membrane filtration and ß-Gal induction by isopropyl ß-D-thiogalactoside. The assay achieved a detection limit of 5 cfu mL-1 and demonstrated recoveries (90.7 % to 103 %) and relative standard deviations <5.7 % in milk and milk powder samples. These findings underscore the potential of the sensor for detecting ß-Gal-positive bacteria in dairy products.

19.
Plant Physiol Biochem ; 211: 108696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705046

ABSTRACT

Drought is a significant abiotic stressor that limits maize (Zea mays L.) growth and development. Thus, enhancing drought tolerance is critical for promoting maize production. Our findings demonstrated that ZmMYB39 is an MYB transcription factor with transcriptional activation activity. Drought stress experiments involving ZmMYB39 overexpression and knockout lines indicated that ZmMYB39 positively regulated drought stress tolerance in maize. DAP-Seq, EMSA, dual-LUC, and RT-qPCR provided initial insights into the molecular regulatory mechanisms by which ZmMYB39 enhances drought tolerance in maize. ZmMYB39 directly promoted the expression of ZmP5CS1, ZmPOX1, ZmSOD2, ZmRD22, ZmNAC49, and ZmDREB2A, which are involved in stress resistance. ZmMYB39 enhanced drought tolerance by interacting with and promoting the expression of ZmFNR1, ZmHSP20, and ZmDOF6. Our study offers a theoretical basis for understanding the molecular regulatory networks involved in maize drought stress response. Furthermore, ZmMYB39 serves as a valuable genetic resource for breeding drought-resistant maize.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Zea mays , Zea mays/genetics , Zea mays/physiology , Zea mays/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Seedlings/genetics , Seedlings/physiology , Stress, Physiological , Plants, Genetically Modified , Drought Resistance
20.
Plant Physiol Biochem ; 207: 108292, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38215602

ABSTRACT

Drought stress is one of the most limiting factors of maize productivity and can lead to a sharp reduction in the total biomass when it occurs at the seedling stage. Improving drought tolerance at the seedling stage is of great importance for maize breeding. The AP2/ERF transcription factor family plays a critical role in plant response to abiotic stresses. Here, we used a preliminary previously-generated ranscriptomic dataset to identify a highly drought-stress-responsive AP2 gene, i.e., ZmEREB24. Compared to the wild type, the overexpression of ZmEREB24 in maize significantly promotes drought tolerance of transgenic plants at the seedling stage. CRISPR/Cas9-based ZmEREB24-knockout mutants showed a drought-sensitive phenotype. RNA-seq analysis and EMSA assay revealed AATGG.CT and GTG.T.GCC motifs as the main binding sites of ZmEREB24 to the promoters of downstream target genes. DAP-seq identified four novel target genes involved in proline and sugar metabolism and hormone signal transduction of ZmEREB24. Our data indicate that ZmEREB24 plays important biological functions in regulating drought tolerance by binding to the promoters of drought stress genes and modulating their expression. The results further suggest a role of ZmEREB24 in regulating drought adaptation in maize, indicating its potential importance for employing molecular breeding in the development of high-yield drought-tolerant maize cultivars.


Subject(s)
Drought Resistance , Seedlings , Seedlings/metabolism , Zea mays/metabolism , Plant Breeding , Droughts , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL