ABSTRACT
Understanding the basis for cellular growth, proliferation, and function requires determining the roles of essential genes in diverse cellular processes, including visualizing their contributions to cellular organization and morphology. Here, we combined pooled CRISPR-Cas9-based functional screening of 5,072 fitness-conferring genes in human HeLa cells with microscopy-based imaging of DNA, the DNA damage response, actin, and microtubules. Analysis of >31 million individual cells identified measurable phenotypes for >90% of gene knockouts, implicating gene targets in specific cellular processes. Clustering of phenotypic similarities based on hundreds of quantitative parameters further revealed co-functional genes across diverse cellular activities, providing predictions for gene functions and associations. By conducting pooled live-cell screening of â¼450,000 cell division events for 239 genes, we additionally identified diverse genes with functional contributions to chromosome segregation. Our work establishes a resource detailing the consequences of disrupting core cellular processes that represents the functional landscape of essential human genes.
Subject(s)
CRISPR-Cas Systems , Genes, Essential , Humans , HeLa Cells , Gene Knockout Techniques , PhenotypeABSTRACT
Regulated start-codon selection has the potential to reshape the proteome through the differential production of upstream open reading frames, canonical proteins, and alternative translational isoforms1-3. However, conditions under which start codon selection is altered remain poorly defined. Here, using transcriptome-wide translation-initiation-site profiling4, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis. Low-efficiency initiation sites are preferentially repressed in mitosis, resulting in pervasive changes in the translation of thousands of start sites and their corresponding protein products. This enhanced stringency of start-codon selection during mitosis results from increased association between the 40S ribosome and the key regulator of start-codon selection, eIF1. We find that increased eIF1-40S ribosome interaction during mitosis is mediated by the release of a nuclear pool of eIF1 upon nuclear envelope breakdown. Selectively depleting the nuclear pool of eIF1 eliminates the change to translational stringency during mitosis, resulting in altered synthesis of thousands of protein isoforms. In addition, preventing mitotic translational rewiring results in substantially increased cell death and decreased mitotic slippage in cells that experience a mitotic delay induced by anti-mitotic chemotherapies. Thus, cells globally control stringency of translation initiation, which has critical roles during the mammalian cell cycle in preserving mitotic cell physiology.
ABSTRACT
To study the epigenetic gene silencing, yeast is an excellent model organism. Sir proteins are required for the formation of silent heterochromatin. Sir2 couples histone deacetylation and NAD hydrolysis to generate an endogenous epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). AAR is involved in the conformational change of SIR complexes, modulates the formation of SIR-nucleosome preheterochromatin and contributes to the spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin regions. Here, we show that AAR is capable of enhancing the chromatin silencing effect under either an extra exogenous AAR or a defect AAR metabolic enzyme situation, but decreasing the chromatin silencing effect under a defect AAR synthetic enzyme state. Our results provide an evidence of biological function importance of AAR. It is indicated that AAR does not only function in vitro but also play a role in vivo to increase the effect of heterochromatin epigenetic gene silencing. However, further investigations of AAR are warranted to expand our knowledge of epigenetics and associated small molecules.
Subject(s)
Chromatin/genetics , O-Acetyl-ADP-Ribose/genetics , O-Acetyl-ADP-Ribose/metabolism , Chromatin/physiology , Epigenesis, Genetic/genetics , Epigenomics/methods , Gene Silencing/physiology , Heterochromatin/metabolism , Histones/metabolism , Nucleosomes/metabolism , O-Acetyl-ADP-Ribose/physiology , Protein Processing, Post-Translational/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism , Sirtuins/genetics , Sirtuins/metabolismABSTRACT
In Saccharomyces cerevisiae, Sir proteins mediate heterochromatin epigenetic gene silencing. The assembly of silent heterochromatin requires histone deacetylation by Sir2, conformational change of SIR complexes, and followed by spreading of SIR complexes along the chromatin fiber to form extended silent heterochromatin domains. Sir2 couples histone deacetylation and NAD hydrolysis to generate an epigenetic metabolic small molecule, O-acetyl-ADP-ribose (AAR). Here, we demonstrate that AAR physically associates with Sir3 and that polySir3-AAR formation has a specific and essential role in the assembly of silent SIR-nucleosome pre-heterochromatin filaments. Furthermore, we show that AAR is capable of stabilizing binding of the Sir3 BAH domain to the Sir3 carboxyl-terminal region. Our data suggests that for the assembly of SIR-nucleosome pre-heterochromatin filament, the structural rearrangement of SIR-nucleosome is important and result in creating more stable interactions of Sir3, such as the inter-molecule Sir3-Sir3 interaction, and the Sir3-nucleosome interaction within the filaments. In conclusion, our results reveal the importance of AAR, indicating that it not only affects the conformational rearrangement of SIR complexes but also might function as a critical fine-tuning modulatory component of yeast silent SIR-nucleosome pre-heterochromatin by stabilizing the intermolecular interaction between Sir3 N- and C-terminal regions.
Subject(s)
Heterochromatin/metabolism , Nucleosomes/metabolism , O-Acetyl-ADP-Ribose/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Epigenesis, Genetic , Protein Binding , Protein Conformation , Protein Stability , Saccharomyces cerevisiae/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/chemistry , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Sirtuin 2/genetics , Sirtuin 2/metabolismABSTRACT
Live-cell imaging and particle tracking provide rich information on mechanisms of intracellular transport. However, trajectory analysis procedures to infer complex transport dynamics involving stochastic switching between active transport and diffusive motion are lacking. We applied Bayesian model selection to hidden Markov modeling to infer transient transport states from trajectories of mRNA-protein complexes in live mouse hippocampal neurons and metaphase kinetochores in dividing human cells. The software is available at http://hmm-bayes.org/.
Subject(s)
Actins/metabolism , Hippocampus/metabolism , Models, Biological , Molecular Imaging/methods , Neurons/cytology , Neurons/metabolism , Animals , Bayes Theorem , Cells, Cultured , Computer Simulation , Female , HeLa Cells , Hippocampus/cytology , Humans , Markov Chains , Mice , MicroRNAs/metabolism , Microscopy, Fluorescence/methods , Models, Statistical , Pattern Recognition, Automated/methods , Protein Transport/physiology , SoftwareABSTRACT
At the end of cell division, cytokinesis splits the cytoplasm of nascent daughter cells and partitions segregated sister genomes. To coordinate cell division with chromosome segregation, the mitotic spindle controls cytokinetic events at the cell envelope. The spindle midzone stimulates the actomyosin-driven contraction of the cleavage furrow, which proceeds until the formation of a microtubule-rich intercellular bridge with the midbody at its centre. The midbody directs the final membrane abscission reaction and has been proposed to attach the cleavage furrow to the intercellular bridge. How the mitotic spindle is connected to the plasma membrane during cytokinesis is not understood. Here we identify a plasma membrane tethering activity in the centralspindlin protein complex, a conserved component of the spindle midzone and midbody. We demonstrate that the C1 domain of the centralspindlin subunit MgcRacGAP associates with the plasma membrane by interacting with polyanionic phosphoinositide lipids. Using X-ray crystallography we determine the structure of this atypical C1 domain. Mutations in the hydrophobic cap and in basic residues of the C1 domain of MgcRacGAP prevent association of the protein with the plasma membrane, and abrogate cytokinesis in human and chicken cells. Artificial membrane tethering of centralspindlin restores cell division in the absence of the C1 domain of MgcRacGAP. Although C1 domain function is dispensable for the formation of the midzone and midbody, it promotes contractility and is required for the attachment of the plasma membrane to the midbody, a long-postulated function of this organelle. Our analysis suggests that centralspindlin links the mitotic spindle to the plasma membrane to secure the final cut during cytokinesis in animal cells.
Subject(s)
Cell Membrane/metabolism , Cytokinesis/radiation effects , GTPase-Activating Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Cytokinesis/genetics , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubules/chemistry , Microtubules/metabolism , Models, Molecular , Protein Binding , Protein Kinase C-alpha/metabolism , Protein Structure, Tertiary , Protein Transport/drug effects , Tetradecanoylphorbol Acetate/analogs & derivatives , Tetradecanoylphorbol Acetate/pharmacologyABSTRACT
Regulated start-codon selection has the potential to reshape the proteome through the differential production of uORFs, canonical proteins, and alternative translational isoforms. However, conditions under which start-codon selection is altered remain poorly defined. Here, using transcriptome-wide translation initiation site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis. Low-efficiency initiation sites are preferentially repressed in mitosis, resulting in pervasive changes in the translation of thousands of start sites and their corresponding protein products. This increased stringency of start-codon selection during mitosis results from increased interactions between the key regulator of start-codon selection, eIF1, and the 40S ribosome. We find that increased eIF1-40S ribosome interactions during mitosis are mediated by the release of a nuclear pool of eIF1 upon nuclear envelope breakdown. Selectively depleting the nuclear pool of eIF1 eliminates the changes to translational stringency during mitosis, resulting in altered mitotic proteome composition. In addition, preventing mitotic translational rewiring results in substantially increased cell death and decreased mitotic slippage following treatment with anti-mitotic chemotherapeutics. Thus, cells globally control translation initiation stringency with critical roles during the mammalian cell cycle to preserve mitotic cell physiology.
ABSTRACT
Microtubules play essential roles in diverse cellular processes and are important pharmacological targets for treating human disease. Here, we sought to identify cellular factors that modulate the sensitivity of cells to anti-microtubule drugs. We conducted a genome-wide CRISPR/Cas9-based functional genetics screen in human cells treated with the microtubule-destabilizing drug nocodazole or the microtubule-stabilizing drug taxol. We further conducted a focused secondary screen to test drug sensitivity for ~1400 gene targets across two distinct human cell lines and to additionally test sensitivity to the Kif11-inhibitor, STLC. These screens defined gene targets whose loss enhances or suppresses sensitivity to anti-microtubule drugs. In addition to gene targets whose loss sensitized cells to multiple compounds, we observed cases of differential sensitivity to specific compounds and differing requirements between cell lines. Our downstream molecular analysis further revealed additional roles for established microtubule-associated proteins and identified new players in microtubule function.
ABSTRACT
Forward genetic screens in model organisms have provided important insights into numerous aspects of development, physiology and pathology. With the availability of complete genome sequences and the introduction of RNA-mediated gene interference (RNAi), systematic reverse genetic screens are now also possible. Until now, such genome-wide RNAi screens have mostly been restricted to cultured cells and ubiquitous gene inactivation in Caenorhabditis elegans. This powerful approach has not yet been applied in a tissue-specific manner. Here we report the generation and validation of a genome-wide library of Drosophila melanogaster RNAi transgenes, enabling the conditional inactivation of gene function in specific tissues of the intact organism. Our RNAi transgenes consist of short gene fragments cloned as inverted repeats and expressed using the binary GAL4/UAS system. We generated 22,270 transgenic lines, covering 88% of the predicted protein-coding genes in the Drosophila genome. Molecular and phenotypic assays indicate that the majority of these transgenes are functional. Our transgenic RNAi library thus opens up the prospect of systematically analysing gene functions in any tissue and at any stage of the Drosophila lifespan.
Subject(s)
Drosophila melanogaster/genetics , Genomic Library , RNA Interference , Animals , Animals, Genetically Modified , Drosophila melanogaster/metabolism , Exons , Female , Male , Muscles/metabolism , Neurons/metabolism , Organ Specificity , RNA, Messenger , Ribonuclease III/metabolismABSTRACT
Factor quinolinone inhibitors (FQIs), a first-in-class set of small molecule inhibitors targeted to the transcription factor LSF (TFCP2), exhibit promising cancer chemotherapeutic properties. FQI1, the initial lead compound identified, unexpectedly induced a concentration-dependent delay in mitotic progression. Here, we show that FQI1 can rapidly and reversibly lead to mitotic arrest, even when added directly to mitotic cells, implying that FQI1-mediated mitotic defects are not transcriptionally based. Furthermore, treatment with FQIs resulted in a striking, concentration-dependent diminishment of spindle microtubules, accompanied by a concentration-dependent increase in multi-aster formation. Aberrant γ-tubulin localization was also observed. These phenotypes suggest that perturbation of spindle microtubules is the primary event leading to the mitotic delays upon FQI1 treatment. Previously, FQIs were shown to specifically inhibit not only LSF DNA-binding activity, which requires LSF oligomerization to tetramers, but also other specific LSF-protein interactions. Other transcription factors participate in mitosis through non-transcriptional means, and we recently reported that LSF directly binds α-tubulin and is present in purified cellular tubulin preparations. Consistent with a microtubule role for LSF, here we show that LSF enhanced the rate of tubulin polymerization in vitro, and FQI1 inhibited such polymerization. To probe whether the FQI1-mediated spindle abnormalities could result from inhibition of mitotic LSF-protein interactions, mass spectrometry was performed using as bait an inducible, tagged form of LSF that is biotinylated by endogenous enzymes. The global proteomics analysis yielded expected associations for a transcription factor, notably with RNA processing machinery, but also to nontranscriptional components. In particular, and consistent with spindle disruption due to FQI treatment, mitotic, FQI1-sensitive interactions were identified between the biotinylated LSF and microtubule-associated proteins that regulate spindle assembly, positioning, and dynamics, as well as centrosome-associated proteins. Probing the mitotic LSF interactome using small molecule inhibitors therefore supported a non-transcriptional role for LSF in mediating progression through mitosis.
Subject(s)
Microtubule-Associated Proteins , Quinolones , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis , Quinolones/metabolism , Quinolones/pharmacology , Spindle Apparatus/metabolism , Transcription Factors/metabolism , Tubulin/metabolismABSTRACT
O-acetyl-ADP-ribose (AAR) is a metabolic small molecule relevant in epigenetics that is generated by NAD-dependent histone deacetylases, such as Sir2. The formation of silent heterochromatin in yeast requires histone deacetylation by Sir2, structural rearrangement of SIR complexes, spreading of SIR complexes along the chromatin, and additional maturation processing. AAR affects the interactions of the SIR-nucleosome in vitro and enhances the chromatin epigenetic silencing effect in vivo. In this study, using isothermal titration calorimetry (ITC) and dot blotting methods, we showed the direct interaction of AAR with Sir3. Furthermore, through chromatin immunoprecipitation (ChIP)-on-chip and chromatin affinity purification (ChAP)-on chip assays, we discovered that AAR is capable of increasing the extended spreading of Sir3 along telomeres, but not Sir2. In addition, the findings of a quantitative real-time polymerase chain reaction (qRT-PCR) and examinations of an in vitro assembly system of SIR-nucleosome heterochromatin filament were consistent with these results. This study provides evidence indicating another important effect of AAR in vivo. AAR may play a specific modulating role in the formation of silent SIR-nucleosome heterochromatin in yeast.
Subject(s)
Chromatin/genetics , O-Acetyl-ADP-Ribose/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Telomere/genetics , Epigenesis, Genetic , Gene Expression Regulation, Fungal , Histone Code , Protein Binding , Saccharomyces cerevisiaeABSTRACT
Centromeres provide a robust model for epigenetic inheritance as they are specified by sequence-independent mechanisms involving the histone H3-variant centromere protein A (CENP-A). Prevailing models indicate that the high intrinsic stability of CENP-A nucleosomes maintains centromere identity indefinitely. Here, we demonstrate that CENP-A is not stable at centromeres but is instead gradually and continuously incorporated in quiescent cells including G0-arrested tissue culture cells and prophase I-arrested oocytes. Quiescent CENP-A incorporation involves the canonical CENP-A deposition machinery but displays distinct requirements from cell cycle-dependent deposition. We demonstrate that Plk1 is required specifically for G1 CENP-A deposition, whereas transcription promotes CENP-A incorporation in quiescent oocytes. Preventing CENP-A deposition during quiescence results in significantly reduced CENP-A levels and perturbs chromosome segregation following the resumption of cell division. In contrast to quiescent cells, terminally differentiated cells fail to maintain CENP-A levels. Our work reveals that quiescent cells actively maintain centromere identity providing an indicator of proliferative potential.
Subject(s)
Centromere Protein A/metabolism , Centromere/metabolism , Muscle, Skeletal/metabolism , Nucleosomes/metabolism , Animals , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Division , Cell Line , Cell Proliferation , Centromere/ultrastructure , Epigenesis, Genetic , Female , Green Fluorescent Proteins/metabolism , Humans , Male , Meiosis , Mice , Mice, Inbred C57BL , Oocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , RNA, Small Interfering/metabolism , Starfish/metabolism , Testis/metabolism , Polo-Like Kinase 1ABSTRACT
Emerging in vitro and in vivo data underline the crucial role of G-protein-coupled receptors (GPCRs) in tumorigenesis. Here, we report the contribution of hGPR87, a predicted member of the P2Y subfamily of GPCRs, to proliferation and survival of human tumor cell lines. hGPR87 mRNA transcript was found to be preferentially overexpressed in squamous cell carcinomas (SCCs) of different locations and in their lymph node metastases. Up-regulation of both, transcript and protein, was detected in samples of SCC of the lung, cervix, skin and head and neck (pharynx, larynx and epiglottis). In addition to the expression of hGPR87 in tumors which originate from stratified epithelia, we identified other hGPR87-positive tumor types including subsets of large cell and adenocarcinomas of the lung and transitional cell carcinomas of the urinary bladder. Loss of function studies using siRNA in human cancer cell lines lead to antiproliferative effects and induction of apoptosis. Like other known P2Y receptors, hGPR87 was found to be mainly located on the cell surface. The overexpression of hGPR87 preferentially in SCCs together with our functional data suggests a common molecular mechanism for SCC tumorigenesis and may provide a novel intervention site for mechanism-based antitumor therapies.
Subject(s)
Carcinoma, Squamous Cell/metabolism , Neoplasms/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Adenocarcinoma/metabolism , Apoptosis , Carcinoma, Large Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Transitional Cell/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/metabolism , Humans , Immunoblotting , Immunohistochemistry , Lung Neoplasms/metabolism , Male , Neoplasms/pathology , Polymerase Chain Reaction , RNA, Small Interfering/metabolism , Skin Neoplasms/metabolism , Transcription, Genetic , Up-Regulation , Urinary Bladder Neoplasms/metabolism , Uterine Cervical Neoplasms/metabolismABSTRACT
A key goal for cell biological analyses is to assess the phenotypes that result from eliminating a target gene. Since the early 1990s, the predominant strategy utilized in human tissue culture cells has been RNA interference (RNAi)-mediated protein depletion. However, RNAi suffers well-documented off-target effects as well as incomplete and reversible protein depletion. The implementation of CRISPR/Cas9-based DNA cleavage has revolutionized the capacity to conduct functional studies in human cells. However, this approach is still underutilized for conducting visual phenotypic analyses, particularly for essential genes that require conditional strategies to eliminate their gene products. Optimizing this strategy requires effective and streamlined approaches to introduce the Cas9 guide RNA into target cells. Here we assess the efficacy of synthetic guide RNA transfection to eliminate gene products for cell biological studies. On the basis of three representative gene targets (KIF11, CENPN, and RELA), we demonstrate that transfection of synthetic single guide RNA (sgRNA) and CRISPR RNA (crRNA) guides works comparably for protein depletion as cell lines stably expressing lentiviral-delivered RNA guides. We additionally demonstrate that synthetic sgRNAs can be introduced by reverse transfection on an array. Together, these strategies provide a robust, flexible, and scalable approach for conducting functional studies in human cells.
Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Gene Targeting , RNA, Guide, Kinetoplastida/metabolism , Gene Knockout Techniques , HeLa Cells , Humans , PhenotypeABSTRACT
Most genes mutated in microcephaly patients are expressed ubiquitously, and yet the brain is the only major organ compromised in most patients. Why the phenotype remains brain specific is poorly understood. In this study, we used in vitro differentiation of human embryonic stem cells to monitor the effect of a point mutation in kinetochore null protein 1 (KNL1; CASC5), identified in microcephaly patients, during in vitro brain development. We found that neural progenitors bearing a patient mutation showed reduced KNL1 levels, aneuploidy, and an abrogated spindle assembly checkpoint. By contrast, no reduction of KNL1 levels or abnormalities was observed in fibroblasts and neural crest cells. We established that the KNL1 patient mutation generates an exonic splicing silencer site, which mainly affects neural progenitors because of their higher levels of splicing proteins. Our results provide insight into the brain-specific phenomenon, consistent with microcephaly being the only major phenotype of patients bearing KNL1 mutation.
Subject(s)
Brain/pathology , Kinetochores/pathology , Microcephaly/genetics , Microcephaly/pathology , Microtubule-Associated Proteins/genetics , Mutation , RNA Splicing , Brain/metabolism , Cells, Cultured , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/pathology , Humans , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , PhenotypeABSTRACT
Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions.
Subject(s)
Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nuclear Proteins/metabolism , Binding Sites , Cell Line , Chromosome Segregation , Cytoskeletal Proteins , Humans , Models, Biological , Protein BindingABSTRACT
Cytokinesis, the final step of cell division, begins with the formation of a cleavage furrow. How the mitotic spindle specifies the furrow at the equator in animal cells remains unknown. Current models propose that the concentration of the RhoGEF ECT2 at the spindle midzone and the equatorial plasma membrane directs furrow formation. Using chemical genetic and optogenetic tools, we demonstrate that the association of ECT2 with the plasma membrane during anaphase is required and sufficient for cytokinesis. Local membrane targeting of ECT2 leads to unilateral furrowing, highlighting the importance of local ECT2 activity. ECT2 mutations that prevent centralspindlin binding compromise concentration of ECT2 at the midzone and equatorial membrane but sustain cytokinesis. While the association of ECT2 with the plasma membrane is essential for cytokinesis, our data suggest that ECT2 recruitment to the spindle midzone is insufficient to account for equatorial furrowing and may act redundantly with yet-uncharacterized signals.
Subject(s)
Cell Membrane/genetics , Cytokinesis/genetics , Proto-Oncogene Proteins/genetics , Anaphase/genetics , Cell Membrane/metabolism , HeLa Cells , Humans , Microtubule-Associated Proteins/metabolism , Mutation , Protein Binding , Proto-Oncogene Proteins/metabolism , Spindle Apparatus/geneticsABSTRACT
To achieve chromosome segregation during mitosis, sister chromatids must undergo a dramatic change in their behavior to switch from balanced oscillations at the metaphase plate to directed poleward motion during anaphase. However, the factors that alter chromosome behavior at the metaphase-to-anaphase transition remain incompletely understood. Here, we perform time-lapse imaging to analyze anaphase chromosome dynamics in human cells. Using multiple directed biochemical, genetic, and physical perturbations, our results demonstrate that differences in the global phosphorylation states between metaphase and anaphase are the major determinant of chromosome motion dynamics. Indeed, causing a mitotic phosphorylation state to persist into anaphase produces dramatic metaphase-like oscillations. These induced oscillations depend on both kinetochore-derived and polar ejection forces that oppose poleward motion. Thus, our analysis of anaphase chromosome motion reveals that dephosphorylation of multiple mitotic substrates is required to suppress metaphase chromosome oscillatory motions and achieve directed poleward motion for successful chromosome segregation.
Subject(s)
Anaphase , Chromosomes, Human/metabolism , Metaphase , Anaphase/drug effects , Chromatids/metabolism , HeLa Cells , Humans , Kinetochores/drug effects , Kinetochores/metabolism , Metaphase/drug effects , Models, Biological , Movement , Okadaic Acid/pharmacology , Phosphorylation/drug effectsABSTRACT
Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, although Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modelling results show that waves represent excitable dynamics of a reaction-diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation.
Subject(s)
Actins/metabolism , Cytokinesis , Signal Transduction , rho GTP-Binding Proteins/metabolism , Anaphase , Animals , CDC2 Protein Kinase/metabolism , Centrosome/metabolism , Cytoplasm/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Female , Guanine Nucleotide Exchange Factors/metabolism , Kinetics , Microscopy, Confocal , Microtubules/metabolism , Oocytes/metabolism , Polymerization , Spindle Apparatus/metabolism , Starfish , Time-Lapse Imaging/methods , Xenopus laevisABSTRACT
Cytokinesis in animal cells depends on spindle-derived spatial cues that culminate in Rho activation, and thereby actomyosin assembly, in a narrow equatorial band. Although the nature, origin, and variety of such cues have long been obscure, one component is certainly the Rho activator Ect2. Here we describe the behavior and function of Ect2 in echinoderm embryos, showing that Ect2 migrates from spindle midzone to astral microtubules in anaphase and that Ect2 shapes the pattern of Rho activation in incipient furrows. Our key finding is that Ect2 and its binding partner Cyk4 accumulate not only at normal furrows, but also at furrows that form in the absence of associated spindle, midzone, or chromosomes. In all these cases, the cell assembles essentially the same cytokinetic signaling ensembleopposed astral microtubules decorated with Ect2 and Cyk4. We conclude that if multiple signals contribute to furrow induction in echinoderm embryos, they likely converge on the same signaling ensemble on an analogous cytoskeletal scaffold.