Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int Arch Allergy Immunol ; : 1-16, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38636483

ABSTRACT

INTRODUCTION: Major histocompatibility complex class II molecule (MHC-II) is pivotal in anti-tumor immunity, and targeting MHC-II in tumors may help improve patient survival. But function of MHC-II in the immunotherapy and prognosis of lung adenocarcinoma (LUAD) patients has not been thoroughly studied and reported. METHODS: We selected LUAD-related MHC-II genes from public databases based on previous literature reports. We identified different subtypes according to expression differences of these genes in different LUAD samples through cluster analysis. We used R package to conduct a series of analyses on different subtypes, exploring their survival differences, gene expression differences, pathway enrichment differences, and differences in immune characteristics and immune therapy. Finally, we screened potential drugs from the cMAP database. RESULTS: We identified two MHC-II-related LUAD subtypes. Our analyses presented that patients with cluster2 subtype showed better prognosis, higher immune scores, higher levels of immune cell infiltration and immune function activation. In addition, patients with this subtype had higher immunophenoscore, lower TIDE scores, and DEPTH scores. We also identified 10 small molecule drugs, such as lenalidomide, VX-745, and tyrphostin-AG-1295. CONCLUSION: Overall, MHC-II is not only a potential biomarker for accurately distinguishing LUAD subtypes but also a predictive factor for their survival. Our study offers novel insights into understanding of impact of MHC-II in LUAD and offers a new perspective for improving the accurate classification of LUAD patients and enhancing drug treatment.

2.
Langmuir ; 40(17): 9265-9279, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38636094

ABSTRACT

Heterogeneous catalytic systems with water as the solvent often have the disadvantage of cross-contamination, while concerns about the purification and workup of the aqueous phase after reactions are rare in the lab or industry. In this context, designing and developing the functional selective solid adsorbent and revealing the adsorption mechanism can provide a new strategy and guidelines for constructing supported heterogeneous catalysts to address these issues. Herein, we report the stable composite adsorbent (Fe/ATP@PPy: magnetic Fe3O4/attapulgite with the polypyrrole shell) that features an integrated multifunctional surface, which can effectively tune the selective adsorption processes for Cu2+, Co2+, and Ni2+ ions and nitrobenzene via the cooperative chemisorption/physisorption in an aqueous system. The adsorption experiments showed that Fe/ATP@PPy displayed significantly higher adsorption selectivity for Ni2+ than Cu2+ and Co2+ ions, especially which exhibited an approximate 100.00% removal for both Ni2+ ions and nitrobenzene in the mixture system with a low concentration. Furthermore, combined tracking adsorption of Ni2+ ions and X-ray photoelectron spectroscopy characterization confirmed that the effective adsorption occurs via ion transfer coordination; the pathway was further validated at the molecular level through theoretical modeling. In addition, the selective adsorption mechanism was proposed based on the adsorption experiment, characterization, and the corresponding density functional theory calculation.

3.
J Org Chem ; 89(12): 8531-8536, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38838346

ABSTRACT

An effective multicomponent reaction for the synthesis of 4-phosphorylated 4H-chromenes via a tandem phosphorylation/alkylation/cyclization/dehydration sequence with water as the only byproduct was developed. Extensive mechanistic investigations involving in situ NMR experiments, time control experiments, and in situ HRMS experiment allowed us to elucidate the order of each subreaction to arrive at a complete understanding of the underlying mechanism of this multicomponent reaction. Mechanistic data confirm that the reaction begins with a phospha-aldol-elimination, followed by addition of a ketone enolate, intermolecular alkylation, intramolecular cyclization, and dehydration under acidic conditions.

4.
Phys Chem Chem Phys ; 26(34): 22681-22695, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39158972

ABSTRACT

The utilization of TiO2 nanolayers that possess excellent biocompatibility and physical properties in DNA sensing and sequencing remains largely to be explored. To examine their applicability in gene sequencing, a comprehensive study on the interaction of DNA oligonucleotides with TiO2 nanolayers was performed through adsorption and desorption experiments. TiO2 nanolayers with 10 nm thickness were fabricated via magnetron sputtering onto a 6-inch silicon wafer. A simple chip block method, validated via quartz crystal microbalance experiments with dissipation monitoring (QCM-D), was proposed to study the adsorption behaviors and interaction mechanisms under a variety of critical influencing factors, including DNA concentration, length, and type, adsorption time, pH, and metal ions. It is determined that the adsorption takes 2 h to reach saturation in the MES solution and the adsorption capacity is significantly enhanced by lowering the pH due to the isoelectric point being pH = 6 for TiO2. The adsorption percentages of nucleobases are largely similar in the MES solution while following 5T = 5G > 5C > 5A in HEPES buffer for an adsorption duration of 2.5 h. Through pre-adsorption experiments, it is deduced that DNA oligonucleotides are horizontally adsorbed on the nanolayer. This further demonstrates that mono-, di-, and tri-valent metal ions promote the adsorption, whereas Zn2+ has strong adsorption by inducing DNA condensation. Based on the desorption experiments, it is revealed that electrostatic force dominates the adsorption over van der Waals force and hydrogen bonds. The phosphate group is the main functional group for adsorption, and the adsorption strength increases with the length of the oligonucleotide. This study provides comprehensive data on the adsorption of DNA oligonucleotides onto TiO2 nanolayers and clarifies the interaction mechanisms therein, which will be valuable for applications of TiO2 in DNA-related applications.


Subject(s)
DNA , Oligonucleotides , Titanium , Titanium/chemistry , Adsorption , Oligonucleotides/chemistry , DNA/chemistry , Hydrogen-Ion Concentration , Nanostructures/chemistry , Quartz Crystal Microbalance Techniques
5.
Molecules ; 29(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338318

ABSTRACT

Theoretical and experimental investigations have shown that biochar, following KOH activation, enhances the efficiency of NO removal. Similarly, NaOH activation also improves NO removal efficiency, although the underlying mechanism remains unclear. In this study, zigzag configurations were employed as biochar models. Density functional theory (DFT) was utilized to examine how Li and Na single adsorption and OH co-adsorption affect the reaction pathways of NO reduction on the biochar surface. The rate constants for all reaction-determining steps (RDSs) within a temperature range of 200 to 1000 K were calculated using conventional transition state theory (TST). The results indicate a decrease in the activation energy for NO reduction reactions on biochar when activated by Li and Na adsorption, thus highlighting their beneficial role in NO reduction. Compared to the case with Na activation, Li-activated biochar exhibited superior performance in terms of the NO elimination rate. Furthermore, upon the adsorption of the OH functional group onto the Li-decorated and Na-decorated biochar models (LiOH-decorated and NaOH-decorated chars), the RDS energy barriers were higher than those of Li and Na single adsorption but easily overcome, suggesting effective NO reduction. In conclusion, Li-decorated biochar showed the highest reactivity due to its low RDS barrier and exothermic reaction on the surface.

6.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731438

ABSTRACT

It is very important to choose a suitable method and catalyst to treat coking wastewater. In this study, Fe-Ce-Al/MMT catalysts with different Fe/Ce molar ratios were prepared, characterized by XRD, SEM, and N2 adsorption/desorption, and treated with coking wastewater. The results showed that the optimal Fe-Ce-Al/MMT catalyst with a molar ratio of Fe/Ce of 7/3 has larger interlayer spacing, specific surface area, and pore volume. Based on the composition analysis of real coking wastewater and the study of phenol simulated wastewater, the response surface test of the best catalyst for real coking wastewater was carried out, and the results are as follows: initial pH 3.46, H2O2 dosage 19.02 mL/L, Fe2+ dosage 5475.39 mL/L, reaction temperature 60 °C, and reaction time 248.14 min. Under these conditions, the COD removal rate was 86.23%.

7.
J Org Chem ; 88(23): 16216-16228, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37967376

ABSTRACT

An effective and economical acid-promoted three-component reaction for the construction of C-P and C-C bonds for the synthesis of γ-ketophosphine oxides with water as the only byproduct was developed. Detailed mechanistic experiments confirmed that the reaction proceeds by phospha-aldol elimination, in which a benzylic carbocation is generated from the phosphorylation of aldehydes, which then reacts with ketone enolates under acidic conditions.

8.
Environ Sci Technol ; 57(5): 2093-2104, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36696288

ABSTRACT

Greenhouse gas (GHG) emissions from integrated urban drainage systems (IUDSs), including sewer, wastewater treatment plants (WWTPs), and receiving water systems, have not yet been integrated due to the lack of modeling tools. Here, we updated the computable general equilibrium-based System Dynamics and Water Environmental Model (CGE-SyDWEM), a recently developed model simulating the water-energy-carbon nexus at the watershed level, to calculate the direct and indirect (electricity use and external) GHG emissions from IUDSs considering carbon mitigation strategies and water engineering practices. The updated CGE-SyDWEM was applied to an estuary watershed in Shenzhen, the fourth largest city in China. With increasing socio-economic development and water infrastructure systems upgrading, GHG emissions are projected to increase from 129.2 (95% CI: 95.9-162.5) kt in 2007 to 190.7 (144.8-236.6) kt in 2025, with 89% from WWTPs (direct: 17%; electricity use: 65%; and external: 7%), 10% from the sewer (direct: 1% and electricity use: 9%) and 1% from receiving waters (direct). Carbon mitigation can reduce GHG emissions by 7% and emission intensity by 6% by 2025, with 63% contributed by external emission reduction from chemical uses. The integrated model can aid water, energy, and carbon decision-makers in finding cost-effective solutions for water and energy security in the future.


Subject(s)
Greenhouse Gases , Carbon , Water , Carbon Dioxide/analysis , China , Greenhouse Effect
9.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513288

ABSTRACT

The interfacial mechanism has always been a concern for 3-aminopropyltriethoxysilane (APTES)-grafted palygorskite (PAL). In this research, the mechanism of graft modification for grafting of APTES to the surface of PAL (100) was studied using density functional theory (DFT) calculation. The results illustrated that different grafting states of the APTES influence the inter- and intramolecular interactions between APTES/PAL (100), which are reflected in the electronic structures. For single-, double-, and three-toothed state APTES-PAL (100), the charge transfer rates from the PAL (100) surface to APTES were 0.68, 1.02, and 0.77 e, respectively. The binding energy results show that PAL (100) modification performance in the double-tooth state is the best compared to the other states, with the lowest value of -181.91 kJ/mol. The double-toothed state has lower barrier energy (94.69, 63.11, and 153.67 kJ/mol) during the modification process. This study offers theoretical insights into the chemical modification of the PAL (100) surface using APTES coupling agents, and can provide a guide for practical applications.

10.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(5): 627-635, 2023 Oct 07.
Article in English, Zh | MEDLINE | ID: mdl-37899401

ABSTRACT

OBJECTIVES: To explore the mechanism of Chinese medicine Jiangzhuo mixture regulating glucose and lipid metabolism in obese rats. METHODS: Thirty healthy male SD rats were randomly divided into normal control group, model control group, and Jiangzhuo mixture treatment group, with 10 rats in each group. The rats in the normal control group were fed with normal diet, the obesity model was induced by feeding high-fat diet in the model control group and the Jiangzhuo mixture treatment group, the rats in the treatment group were given with Jiangzhuo mixture 50 g/kg by gavage. After 8 weeks of intervention, the blood glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were measured in the three groups. Quantitative reverse transcription PCR were used to detect the expression levels of PR domain containing 16 (PRDM16) and uncoupling protein 1 (UCP1) in white and brown adipose tissues of the rats in each group; Western blotting was used to detect the expression of PRDM16 in the white and brown adipose tissue of rats, and Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) and inhibitor of NF-κB alpha (IκBα) in the white adipose tissue; immunohistochemistry was used to detect the expression of UCP1 protein in white and brown adipose tissues. RESULTS: Compared with the normal control group, the white fat weight (P<0.01), white fat coefficient (P<0.05) and Lee's coefficient (P<0.01) were significantly increased in the model control group; the contents of GLU, TC, TG and LDL-C were all increased, and the content of TG was significantly increased (P<0.05) in the model control group. The mRNA and protein expression levels of PRDM16 and UCP1 in white fat and brown fat were significantly decreased (P<0.05) in the model control group. Compared with the model control group, the white fat weight and white fat coefficient and Lee's coefficient were significantly reduced in the Jiangzhuo mixture treatment group (all P<0.01), the levels of GLU, TC, TG, and LDL-C in the the treatment group were all reduced, and the content of TG was reduced more obviously (P<0.01); expression levels of PRDM16 and UCP1 mRNA and protein were increased in brown and white adipose tissue. Compared with the normal control group, the expression levels of TLR4, phospho-IκBα and NF-κB-p65 proteins in white adipose tissue of the model control group were significantly increased (all P<0.01), while the expression levels of these proteins in the treatment group were significantly lower than those in the model control group (all P<0.05). CONCLUSIONS: Jiangzhuo mixture can alleviate high-fat diet-induced increase in body fat, abnormal expression of biochemical indexes and promote the expression of key proteins including UCP1 and PRDM16 in white and brown adipose tissues by regulating TLR4/IκBα/NF-κB signaling pathway.


Subject(s)
Glucose , NF-kappa B , Rats , Male , Animals , NF-kappa B/metabolism , Rats, Sprague-Dawley , Lipid Metabolism , Toll-Like Receptor 4 , Cholesterol, LDL/metabolism , NF-KappaB Inhibitor alpha/metabolism , Medicine, Chinese Traditional , Signal Transduction , Triglycerides , Transcription Factors/metabolism , Obesity , RNA, Messenger
11.
N Engl J Med ; 381(12): 1124-1135, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31150573

ABSTRACT

BACKGROUND: Platinum-based concurrent chemoradiotherapy is the standard of care for patients with locoregionally advanced nasopharyngeal carcinoma. Additional gemcitabine and cisplatin induction chemotherapy has shown promising efficacy in phase 2 trials. METHODS: In a parallel-group, multicenter, randomized, controlled, phase 3 trial, we compared gemcitabine and cisplatin as induction chemotherapy plus concurrent chemoradiotherapy with concurrent chemoradiotherapy alone. Patients with locoregionally advanced nasopharyngeal carcinoma were randomly assigned in a 1:1 ratio to receive gemcitabine (at a dose of 1 g per square meter of body-surface area on days 1 and 8) plus cisplatin (80 mg per square meter on day 1), administered every 3 weeks for three cycles, plus chemoradiotherapy (concurrent cisplatin at a dose of 100 mg per square meter every 3 weeks for three cycles plus intensity-modulated radiotherapy) or chemoradiotherapy alone. The primary end point was recurrence-free survival (i.e., freedom from disease recurrence [distant metastasis or locoregional recurrence] or death from any cause) in the intention-to-treat population. Secondary end points included overall survival, treatment adherence, and safety. RESULTS: A total of 480 patients were included in the trial (242 patients in the induction chemotherapy group and 238 in the standard-therapy group). At a median follow-up of 42.7 months, the 3-year recurrence-free survival was 85.3% in the induction chemotherapy group and 76.5% in the standard-therapy group (stratified hazard ratio for recurrence or death, 0.51; 95% confidence interval [CI], 0.34 to 0.77; P = 0.001). Overall survival at 3 years was 94.6% and 90.3%, respectively (stratified hazard ratio for death, 0.43; 95% CI, 0.24 to 0.77). A total of 96.7% of the patients completed three cycles of induction chemotherapy. The incidence of acute adverse events of grade 3 or 4 was 75.7% in the induction chemotherapy group and 55.7% in the standard-therapy group, with a higher incidence of neutropenia, thrombocytopenia, anemia, nausea, and vomiting in the induction chemotherapy group. The incidence of grade 3 or 4 late toxic effects was 9.2% in the induction chemotherapy group and 11.4% in the standard-therapy group. CONCLUSIONS: Induction chemotherapy added to chemoradiotherapy significantly improved recurrence-free survival and overall survival, as compared with chemoradiotherapy alone, among patients with locoregionally advanced nasopharyngeal carcinoma. (Funded by the Innovation Team Development Plan of the Ministry of Education and others; ClinicalTrials.gov number, NCT01872962.).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemoradiotherapy , Cisplatin/administration & dosage , Deoxycytidine/analogs & derivatives , Induction Chemotherapy , Nasopharyngeal Carcinoma/drug therapy , Adolescent , Adult , Cisplatin/adverse effects , Deoxycytidine/administration & dosage , Deoxycytidine/adverse effects , Female , Humans , Induction Chemotherapy/adverse effects , Leukopenia/chemically induced , Male , Middle Aged , Nasopharyngeal Carcinoma/therapy , Survival Analysis , Young Adult , Gemcitabine
12.
Neuroimmunomodulation ; 29(3): 220-230, 2022.
Article in English | MEDLINE | ID: mdl-34823248

ABSTRACT

OBJECTIVE: The immunological features between neuromyelitis optica spectrum disorder (NMOSD), multiple sclerosis (MS), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), lacked systemic comparisons. Accordingly, we aimed to investigate immunological differences between NMOSD, MS, and MOGAD. METHODS: Patients with MOGAD, MS, and NMOSD who received immunological tests including cytokine profiles and cytometry analysis of the lymphocyte subgroups were retrospectively reviewed and divided into training and validation sets. Discriminatory models based on immunological data were established to identify optimal classifiers using orthogonal partial least square discriminant analysis (OPLS-DA). Constructed models were tested in another independent cohort. RESULTS: OPLS-DA of the immunological data from 50 patients (26 NMOSD, 14 MS, and 10 MOGAD) demonstrated the discriminatory values of a relatively low level of T-lymphocyte subsets, especially the CD4+ T cells, in MOGAD; a decreased NK cell, eosinophil, and lymphocyte level; an elevated neutrophil-to-lymphocyte ratio in NMOSD; and a declined IFN-γ-producing CD4+ T cells/Th with an increased IL-8 concentration in MS. All the models (NMOSD vs. MS, NMOSD vs. MOGAD, and MS vs. MOGAD) exhibited a significant predictive value and accuracy (>85%). CONCLUSIONS: NMOSD, MS, and MOGAD may be different in pathogenesis, and several immunological biomarkers can serve as potential classifiers clinically.


Subject(s)
Multiple Sclerosis , Neuromyelitis Optica , Aquaporin 4 , Autoantibodies , Central Nervous System/pathology , Humans , Multiple Sclerosis/diagnosis , Myelin-Oligodendrocyte Glycoprotein , Retrospective Studies
13.
Nanotechnology ; 33(48)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35803093

ABSTRACT

In this work, a mild chemical precipitation method and simple hydrothermal treatment of the nickel hexamyanocobaltate precursor strategy are developed to prepare a sea urchin-like CoNi2S4compound with remarkable specific capacity and excellent cycling stability. The prepared CoNi2S4has an outstanding specific capacity of 149.1 mA h g-1at 1 A g-1and an initial capacity of 83.1% after 3000 cycles at 10 A g-1. Moreover, the porous carbon nanospheres (PCNs) with exhibit cycling stability (94.7% of initial specific capacity after 10 000 cycles at 10 A g-1) are selected as negative electrode to match CoNi2S4positive electrode for assembly of CoNi2S4//PCNs asymmetric supercapacitor (ASC). Satisfactorily, the as-assembled CoNi2S4//PCNs ASC exhibits an impressive energy density of 41.6 Wh kg-1at 797 W kg-1, as well as the suitable capacity retention of 82.8% after 10 000 cycles. The superior properties of the device demonstrated that the as-prepared material is potential energy storage material.

14.
Biomed Chromatogr ; 36(10): e5435, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35763335

ABSTRACT

The study of brain diseases has long been of interest to researchers worldwide, and stroke is the third leading cause of death that threatens human health. At the same time, cerebral ischemia-reperfusion injury is closely associated with high rates of disability and mortality. The conditions of the 6-aminoquinolyl N-hydroxysccinimidyl carbamate method for the derivatization of amino acids in the bone marrow fluid and hippocampus of C57BL/6 mice with cerebral ischemia-reperfusion injury were explored and optimized, such as the column temperature, concentration of derivatization reagents and mobile phase concentration. The mobile phase consisted of 20 mm sodium acetate solution (phosphoric acid to adjust pH 5.0) and 60% acetonitrile solution at a flow rate of 1 ml min-1 . The 23 analytes were separated and determined in a gradient elution procedure; the correlation coefficient r was >0.9990 in the range 0.1-8.0 µg ml-1 . The results showed that the content of relevant analytes was significantly changed in the cerebral ischemia-reperfusion injury model, and the method was suitable for the simultaneous determination of 23 amino acids in the bone marrow fluid and hippocampus of C57BL/6 mice.


Subject(s)
Bone Marrow , Reperfusion Injury , Amino Acids , Aminoquinolines , Animals , Chromatography, High Pressure Liquid/methods , Hippocampus , Humans , Indicators and Reagents , Mice , Mice, Inbred C57BL
15.
Clin Genet ; 99(5): 704-712, 2021 05.
Article in English | MEDLINE | ID: mdl-33439495

ABSTRACT

Thalassemia is a common monogenic disease in southwestern China, especially in Guizhou province. In this study, 18 309 neonates were examined for thalassemia. The thalassemia carrier rate was 12.90%, which is associated with geographical regions, with carrier frequencies significantly differing between regions (p < 0.0001). The carrier rates for α-thalassemia and ß-thalassemia were 8.91% and 3.36%, respectively. There are 22 genotypes identified among 1632 α-thalassemia cases, and 18 genotypes detected among 615 ß-thalassemia cases. The birthrates of individuals with intermediate thalassemia and ß-thalassemia major were 0.153% and 0.055%, respectively. Methodologically, NGS-Gap-PCR is superior to traditional detection methods, with 65 more cases detected by NGS-Gap-PCR. Since thalassemia-rich genotypes were highly prevalent in this region, early detection of thalassemia carriers would be meaningful for genetic counseling and prevention/treatment of thalassemia. NGS-Gap-PCR provides a powerful tool for neonate genetic testing and clinical diagnosis of thalassemia, especially in high-prevalence regions.


Subject(s)
Genetic Testing , alpha-Thalassemia/epidemiology , beta-Thalassemia/epidemiology , China/epidemiology , Female , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn , Male , Polymerase Chain Reaction , Prevalence , alpha-Globins/genetics , alpha-Thalassemia/genetics , beta-Thalassemia/genetics
16.
Nanotechnology ; 32(44)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34311450

ABSTRACT

Recently, prussian blue analogues (PBAs), as the most classical class of metal-organic frameworks, have been widely studied by scientists. Nevertheless, the inferior conductivity of PBAs restricts the application in supercapacitors. In this work, nickel cobalt hexacyanoferrate (Ni2CoHCF) had been produced via a simple co-precipitation approach and coated with polypyrrole on its surface. The conductivity of PBAs was improved by the polypyrrole coating. The Ni2CoHCF@PPy-400 microspheres were demonstrated to the outstanding specific capacity of 82 mAh g-1at 1 A g-1. After 3000 cycles, the Ni2CoHCF@PPy-400 microspheres had a long cycle life and 86% specific capacity retention rate at 5 A g-1. Additionally, it was coupled with activated carbon to build high performance asymmetric supercapacitor (Ni2CoHCF@PPy-400//AC), which displayed a high energy density of 21.7 Wh kg-1at the power density of 888 W kg-1and good cycle stability after 5000 cycles (a capacity retention rate of 85.2%). What is more, the results reveal that the Ni2CoHCF@PPy-400 microspheresare a prospective candidate for exceptional energy storage devices.

17.
Molecules ; 26(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34770810

ABSTRACT

Recently, superhydrophobic surfaces with self-cleaning ability have attracted broad research interest due to their huge potential in daily lives and industrial applications, but the use of fluorinate, toxic organic compounds, and expensive feedstocks make superhydrophobic materials a great challenge in practical application. In this study, we present a facile dip-coating strategy to prepare superhydrophobic coatings with self-cleaning properties based on a non-fluorine and non-toxic system by using eco-friendly corn straw as raw material. During this process, aromatic carbon particles with rough hierarchical structures were prepared firstly via a simple fast pyrolysis process, followed by modification with polydimethylsiloxane (PDMS) in absolute ethanol solvent to decrease the surface free energy. Research shows these natural straw-derived carbons display a microstructure of several protrusions which is similar to the lotus leave's and the resulted coatings exhibit an outstanding superhydrophobic property with a static water contact angle (WCA) of 151.67 ± 1.36 degrees. In addition, the as-prepared coatings possessed excellent self-cleaning performance: no contaminations were observed on the surfaces after examining with sludge, calcimine, water, and common liquids such as tea, milk, soybean milk as well as ink, which have a broad range of potential application in the field of antifouling, waterproofing, and anticorrosive.


Subject(s)
Carbon/chemistry , Coated Materials, Biocompatible/chemistry , Hydrophobic and Hydrophilic Interactions , Zea mays/chemistry , Dimethylpolysiloxanes/chemistry , Nylons/chemistry , Surface Properties
18.
J Org Chem ; 84(7): 4000-4008, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30864430

ABSTRACT

An "on water" organocatalytic cyanoarylmethylation of aryl acetonitrile to isatins is developed, giving products in high yields and up to excellent diastereoselectivities. A remarkable enhancement of reaction rates and diastereoselectivities by water was observed under mild conditions. Moreover, this approach provides a highly efficient and environmentally benign access to thermodynamic 3-hydroxy-3-cyanomethyl oxindoles.


Subject(s)
Acetonitriles/chemical synthesis , Isatin/chemistry , Oxindoles/chemical synthesis , Water/chemistry , Acetonitriles/chemistry , Catalysis , Methylation , Models, Molecular , Oxindoles/chemistry , Stereoisomerism
19.
Environ Sci Technol ; 53(3): 1715-1724, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30620567

ABSTRACT

Carbon mitigation strategies have been developed without sufficient consideration of their impacts on the water system. Here, our study evaluates whether carbon mitigation strategies would decrease or increase local industrial water use and water-related pollutants discharge by using a computable general equilibrium (CGE) model coupled with a water withdrawals and pollutants discharge module in Shenzhen, the fourth largest city in China. To fulfill China's Nationally Determined Contributions (NDC) targets, Shenzhen's GDP and welfare losses are projected to be 1.6% and 5.6% in 2030, respectively. The carbon abatement cost will increase from 56 USD/t CO2 in 2020 to 274 USD/t CO2 in 2030. The results reveal that carbon mitigation accelerates local industrial structure upgrading by restricting carbon-, energy-, and water-intensive industries, e.g., natural gas mining, nonmetal, agriculture, food production, and textile sectors. Accordingly, carbon mitigation improves energy use efficiency and decreases 55% of primary energy use in 2030. Meanwhile, it reduces 4% of total industrial water use and 2.2-2.4% of two major pollutants discharge, i.e., CODCr and NH3-N. Carbon mitigation can also decrease petroleum (2.2%) and V-ArOH (0.8%) discharge but has negative impacts on most heavy metal(loid)s pollutants discharge (increased by -0.01% to 4.6%). These negative impacts are evaluated to be negligible on the environment. This study highlights the importance of considering the energy-water nexus for better-coordinated energy and water resources management at local and national levels.


Subject(s)
Carbon , Environmental Pollutants , Carbon Dioxide , China , Water
20.
Future Oncol ; 15(35): 4105-4118, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31746639

ABSTRACT

Aim: To systematically review the prophylactic and therapeutic interventions for reducing the incidence or severity of intestinal symptoms among cancer patients receiving radiotherapy. Materials & methods: A literature search was conducted in the PubMed database using various search terms, including 'radiation enteritis', 'radiation enteropathy', 'radiation-induced intestinal disease', 'radiation-induced intestinal damage' and 'radiation mucositis'. The search was limited to in vivo studies, clinical trials and meta-analyses published in English with no limitation on publication date. Other relevant literature was identified based on the reference lists of selected studies. Results: The pathogenesis of acute and chronic radiation-induced intestinal damage as well as the prevention and treatment approaches were reviewed. Conclusion: There is inadequate evidence to strongly support the use of a particular strategy to reduce radiation-induced intestinal damage. More high-quality randomized controlled trials are required for interventions with limited evidence suggestive of potential benefits.


Subject(s)
Intestinal Diseases/etiology , Neoplasms/complications , Radiation Injuries/etiology , Radiotherapy/adverse effects , Animals , Disease Models, Animal , Humans , Incidence , Intestinal Diseases/diagnosis , Intestinal Diseases/epidemiology , Intestinal Diseases/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/radiation effects , Neoplasms/epidemiology , Neoplasms/radiotherapy , Radiation Injuries/diagnosis , Radiation Injuries/epidemiology , Radiation Injuries/prevention & control , Radiotherapy/methods , Severity of Illness Index , Stem Cells/metabolism , Stem Cells/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL